Download presentation
Presentation is loading. Please wait.
Published byBaldwin Peters Modified over 9 years ago
1
ITEA Conference Salt Lake City Dr. Brad Christensen Berea College
2
Why boats? Fun Interesting Many activities that can be done in the classroom Absolutely critical for a world economy Full of opportunities for Constraints, Optimization, and Predictive Analysis
3
Basic boat dimensions LOAlength over all LWLlength water line Beamwidth Beam WLusually 90%-95% of beam Draftboat hull below the water line Freeboardboat hull above the water line Displacementamount of water pushed aside
4
Displacement vs Planing hulls Displacement hulls Usually rounded Upswept buttock lines aft Can be heavy Push water out of the way and then allow it to flow back behind the boat Planing hulls Usually more flat or square Straight buttock lines aft Lightweight Designed to skim over the water
5
Displacement (Beam WL X draft) X mid section coefficient = midsection displacement (LWL X Midsection displacement) X Prismatic Coefficient = displacement in cubic feet 1 cubic foot of water weighs about 64 pounds
6
Floatation How much weight will it take to sink another inch? Water plane area Multiply water line length (LWL) by water line beam times prismatic coefficient (.76 for a standard hull) Water is 5.34 pounds for 1 sq. ft. 1 inch deep Light fine ended sailboats.68 Heavy, full ended sailboats.71 Fine ended power boats.74 Full ended planing boats.80
7
Center of Buoyancy Usually about 55% of LWL from bow Can be as much as 65% for some powerboats More accurate to make a CB calculator Graph displacement at each section of hull Connect the points with a fair curve Cut out graph and balance on a knife edge Balance point is the Center of Buoyancy
8
Trim Square of the water plane area and multiply by 0.35 (for square feet). Divide that number by the water line beam. 16 ft by 2 ft kayakwater plane area is 20.8 sq. ft. 20.8 squared = 424.32 424.32 times 0.35 = 148.5 148.5 divided by 2 = 74.25 foot/pounds per inch of trim If you placed 74 pounds one foot behind the CB, the bow would be about 1 inch above the stern
9
Out of trim How much out of trim is still okay? About 1% of LWL 1% of 16 ft (192 inches) LWL is about 2 inches
10
How fast will she go? How fast do you need/want to go? 4 miles per hour rowing 10 miles per hour sailing 50 mph is very, very fast on water Most skiers do about 30 mph or less Most production powerboats operate best at 20-35 mph Super high speed boats do between 80-120 mph World speed record is 315 mph held by Ken Warbly of Ohio since the late 1970s
11
Speed of a displacement hull Theoretical Hull speed Knots = 1.34 times square root of LWL 1 knot = 1.15 mph Increase LWL will increase hull speed….up to a point Increases LWL increases wetted surface which increases drag
12
Speed of a planing hull Most critical factor in planing boat speed is the power to weight ratio Accurate weight Boat Crew Supplies Fuel diesel 7.2 lbs/gal gasoline 6.1 lbs/gal Fresh water 8.4 lbs/gal
13
Speed of a planing hull Accurate power Outboardspower measured at prop Inboardsfigure about 95% Engines run continuously at about 60%-70% max so figure horsepower at about 60%-70% max rating Subtract another 4%-6% for friction in the drive train
14
Speed of a planing hull Pounds per horsepower ratio 5 lbs/hp80 knots 10 lbs/hp60 knots 15 lbs/hp50 knots 20 lbs/hp42 knots 25 lbs/hp37 knots 30 lbs/hp33 knots 35 lbs/hp31 knots 40 lbs/hp29 knots
15
Fuel Economy Diesel engines 0.055 gallons per horsepower per hour 100 horsepower engine would use 5.5 gallons per hour 100 horsepower drives a 2000 pound boat at about 38 mph so the boat gets 6.9 mpg Gasoline engines 0.1 gallons per horsepower per hour 100 horsepower engine would use 10 gallons per hour 100 horsepower engine drives a 2000 pound boat at about 38 mph so the boat gets 3.8 mpg
16
Speed of a sailboat Usually displacement hull so limited by LWL Sail area to displacement ratio (power to weight) Sail area divided by Displacement (in cubic feet to the 2/3 power) = SA/Disp ratio Cruising boats16-18 Performance cruisers18-20 Racing boats20-22 High performance racer22 and up Performance multihulls28 and up
17
Barge Activities Make it float Hold a lot of weight for given size Make it fast Hull shape for best speed given size, weight, and power Make it efficient Pay for weight carried but charge for power Ideal tank 1 ft wide by 20 ft long, 6 inches deep falling weight and string for power
18
Barge Activities
19
Sailboat activities Running(wind astern) Simple Outdated Reaching(wind abeam) Faster More realistic Ideal tank 2 ft by 10 ft by 1 ft deep box fan on the end 4 box fans along the side
20
Power boat activities Rubberband power Paddle wheel Simple Slow Above water propeller Simple Fast Below water propeller Fast Realistic
21
Powerboat activities Electric Battery Solar Gasoline Model airplane engines “Weed Eater” engines Ideal tank (dependent on anticipated speed) 8 ft wide by 24 ft long by 1 ft deep
22
Boat Racing
23
Control of model boat Free running String Wire Infrared Pre-programmed Radio control 2 channels Steering Throttle
24
Boat control
25
Model boat to real boat Build a model to ¾ inch = 1 foot scale 1 penny weighs 25 pounds Multiply boat speed times 4 to determine performance of actual boat
26
Boat Building Taped seam construction Plywood panels cut to shape Held together with plastic ties Joints taped with fiberglass Strip built Thin strips edge glued over frames Fiberglased inside and out Hybrid Plywood hull Strip deck
27
Small boat design class Plywood panels are cut to shape from full- scale patterns.
28
Small boat design class Panels are taped together end to end with fiberglass cloth to provide necessary length. Waxed paper gives smooth finish.
29
Small boat design class
32
References The Nature of Boats: Insight and Esoterica for the Nautically Obsessed, Dave Gerr, International Marine, Camden Maine
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.