Download presentation
Presentation is loading. Please wait.
Published byClaude Blake Modified over 9 years ago
1
CSC411- Machine Learning and Data Mining Unsupervised Learning Tutorial 9– March 16 th, 2007 University of Toronto (Mississauga Campus)
2
Unsupervised Learning ► Clustering K-Means algorithm ► Reinforcement Learning Q-learning algorithm
3
K-Means algorithm
4
Numerical Data Set K Input K-Means algorithm
5
K-Means algorithm Original Data (2 dimensions)
6
Reinforcement Learning ► Markov Decision Processes (MDP) MDP(S, A, T, R) ► S: environment states ► A: actions available to the agent ► T: state transition function ► R: reward function At each step t: ► Observe current state S t ► Choose action to perform A t ► Receive reward(reinforcement) R t = R(S t, A t ) ► Next State S t+1 = T(S t, A t )
7
Q-learning algorithm
11
► Try the Tower-of-Hanoi Game Tower-of-Hanoi GameTower-of-Hanoi Game
12
Reference ► Teknomo, Kardi. K-Means Clustering Tutorials. http:\\people.revoledu.com\kardi\ tutorial\kMean\
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.