Download presentation
Presentation is loading. Please wait.
Published byPaul Singleton Modified over 9 years ago
1
Threading the Needle: Maintenance of an Unfolded Polypeptide by a Cognate Chaperone in Bacterial Type III Secretion Andrew Perrin Department of Microbiology University of Guelph
2
Bacterial Pathogenesis? Bacteria as pathogens Implications
3
Common Themes in Pathogenesis (Salmonella) 1.Infect host 2.Replicate 3.Subvert Host Design a TIM Barrel I Think I’ll Design a TIM Barrel
4
Digression L.M. Prescott, J.P. Harley, D.A. Klein, Microbiology, 5 th Ed. McGraw Hill (2001).
5
How Do You Circumvent This?
6
“Standard Secretion” V.T. Lee and O. Schneewind, Genes Dev. 15, 1725-1752 (2001).
7
But How Do You Get Proteins into the Host Cytosol? Two Solutions
8
Choice 1: Receptor-Mediated Endocytosis A.A. Salyers and D.D. Whitt, Bacterial Pathogenesis: A Molecular Approach, 2 nd Ed. ASM Press (2000).
9
Choice 2: Inject Directly into Host Cell
10
Type III Secretion T.G. Kimbrough and S.I. Miller, Microbes Infect. 4, 75-82 (2002). T. Kubori et al., Science 280, 602-605 (1998). 100 nm
11
Pathogenesis of Salmonella A.A. Salyers and D.D. Whitt, Bacterial Pathogenesis: A Molecular Approach, 2 nd Ed. ASM Press (2000).
12
Problem: Epithelial Cells Non- Phagocytic! A.A. Salyers and D.D. Whitt, Bacterial Pathogenesis: A Molecular Approach, 2 nd Ed. ASM Press (2000).
13
Solution: Make the Cells Phagocytic T.G. Kimbrough and S.I. Miller, Microbes Infect. 4, 75-82 (2002).
14
Salmonella Entry J.E. Galán, Personal Communication.
15
How? Activation of RhoGTPases by SopE (GEF) –Cytoskeletal changes Y. Fu and J.E. Galán, Nature 401, 293-297 (1999).
16
Resolution Deactivation of RhoGTPases by SptP (GAP) Y. Fu and J.E. Galán, Nature 401, 293-297 (1999).
17
Summary C.E. Stebbins and J.E. Galán, Nature 412, 701-705 (2001).
18
Structure of SptP
19
Function of SptP C.E. Stebbins and J.E. Galán, Mol. Cell 6, 1449-1460 (2000).
20
But How Do You Get SptP into the Host Cell?
21
Type III Secretion, Of Course! 74 Å 42 Å 39 Å 30 Å Type III System
22
How Do You “Thread the Needle”?
23
Type III Chaperones! Small (12-20 kDa) Acidic pI Bind non-covalently Y. Fu and J.E. Galán, J. Bacteriol. 180, 3393-3399 (1998).
24
SicP Binding to SptP C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001). No secretion signal (mRNA?) Prevent aggregation/degradation
25
Chaperones and Secretion 1.Targeting to secretion system AND
26
SicP Maintains an Unfolded SptP C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
27
SicP Maintains an Unfolded SptP
28
Where Does SicP Bind? C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
29
Domain A C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
30
Where Does SicP Bind? C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
31
Domain B C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
32
Where Does SicP Bind? C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
33
Domain C C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
34
Where Does SicP Bind? C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
35
Domain D C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
36
SptP Binding Buries Hydrophobic Surfaces on SicP
37
C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001).
38
Why a Dimer/Tetramer of SicP? Tetramer may be artifact of crystal Dimer supported biochemically –Static-light scattering –Isothermal titration calorimetry –Other crystal studies
39
So, How Does SptP Get to the Host Cell Cytosol? C.L. Smith and S.J. Hultgren, Nature 414, 29-30 (2001).
40
Effector Unfolding/Refolding? M. Mourez et al., Trends Microbiol. 10, 287-293 (2002).
41
Salmonella is Smart! Permanent pathogens versus occasional Constant activation of RhoGTPases: –Oncogenesis –Neurofibramatosis
42
Controlled Parasitism is Key! Let’s design a TIM barrel together!
43
Future Directions Need full structure and more of them Targeting to Type III system? Interactions between effector-chaperone and Type III system
44
References 1.Y.Fu and J.E. Galán, J. Bacteriol. 180, 3393-3399 (1998). 2.Y. Luo et al., Nat. Struct. Biol. 8, 1031-1036 (2001). 3.C.E. Stebbins and J.E. Galán, Nature 414, 77-81 (2001). 4.C.L. Smith and S.J. Hultgren, Nature 414, 29-30 (2001). 5.T. Kubori et al., Science 280, 602-605 (1998). 6.C.E. Stebbins and J.E. Galán, Mol. Cell 6, 1449-1460 (2000). 7.V.T. Lee and O. Schneewind, Genes Dev. 15, 1725-1752 (2001). 8.Y. Fu and J.E. Galán, Nature 401, 293-297 (1999). 9.T.G. Kimbrough and S.I. Miller, Microbes Infect. 4, 75-82 (2002). 10.J. Wesche et al., Biochemistry 37, 15737-15746 (1998). 11.K. Scheffzek, M. Reza and A. Wittinghofer, Trends Biochem. 23, 257-262 (1998). 12.S.R. Sprang, Science 277, 329-330 (1997). 13.Hardt et al., Cell 93, 815-826 (1998). 14.A.A Salyers and D.D. Whitt, Bacterial Pathogenesis: A Molecular Approach, 2 nd Ed. ASM Press (2000). 15.L.M. Prescott, J.P. Harley and D.A. Klein, Microbiology, 5 th Ed. McGraw Hill (2001). 16.M. Mourez et al., Trends Microbiol. 10, 287-293 (2002).
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.