Presentation is loading. Please wait.

Presentation is loading. Please wait.

Bregman Information Bottleneck NIPS’03, Whistler December 2003 Koby Crammer Hebrew University of Jerusalem Noam Slonim Princeton University.

Similar presentations


Presentation on theme: "Bregman Information Bottleneck NIPS’03, Whistler December 2003 Koby Crammer Hebrew University of Jerusalem Noam Slonim Princeton University."— Presentation transcript:

1 Bregman Information Bottleneck NIPS’03, Whistler December 2003 Koby Crammer Hebrew University of Jerusalem Noam Slonim Princeton University

2 Motivation Extend the IB for a broad family of representations Relation to the Exponential family Hello, world Multinomial distribution Vectors

3 Outline Rate-Distortion Formulation Bregman Divergences Bregman IB Statistical Interpretation Summary

4 Information Bottleneck XTY X [p(y=1|X) … p(y=n|X)] [p(y=1|T) … p(y=n|T)] T

5 Input Variables Distortion Rate-Distortion Formulation

6 Bolzman Distribution: Markov + Bayes Marginal Self-Consistent Equations

7 Bregman Divergences f (u,f(u)) (v,f(v)) (v, f(u)+f’(u)(v-u)) B f (v||u) = f(v) - (f(u)+f’(u)(v-u))B f (v||u) = f:S R

8 Functional Bregman Function Input Variables Distortion Bregman IB: Rate-Distortion Formulation

9 Bolzman Distribution: Prototypes: convex combination of input vectors Marginal Self-Consistent Equations

10 Special Cases Information Bottleneck:  Bregman function : f(x)=x log(x) – x  Domain: Simplex  Divergence: Kullback-Leibler Soft K-means  Bregman function: f(x)=(1/2) x 2  Domain: Reals n  Divergence: Euclidian Distance  [Still, Bialek, Bottou, NIPS 2003]

11 Bregman IB Information Bottleneck Bregman Clustering Rate-Distortion Exponential Family

12 Expectation parameters: Examples (single dimension):  Normal  Poisson

13 Expectation parameters:  Properties :  Exponential Family and Bregman Divergences

14 Illustration

15 Expectation parameters:  Properties :   Exponential Family and Bregman Divergences

16 Distortion: Data vectors and prototypes: expectation parameters Question: For what exponential distribution we have ? Answer: Poisson Back to Distributional Clustering

17 Product of Poisson Distributions Illustration a a b a a a b a a a.8.2 ab 60 40 ab Pr Multinomial Distribution

18 Back to Distributional Clustering Information Bottleneck:  Distributional clustering of Poison distributions (Soft) k-means:  (Soft) Clustering of Normal distributions

19 Distortion Input:  Observations Output  Parameters of Distribution IB functional: EM [Elidan & Fridman, before] Maximum Likelihood Perspective

20 Posterior: Partition Function: Weighted  -norm of the Likelihood  → ∞, most likely cluster governs  →0, clusters collapse into a single prototype Back to Self Consistent Equations

21 Summary Bregman Information Bottleneck  Clustering/Compression for many representations and divergences Statistical Interpretation  Clustering of distributions from the exponential family  EM like formulation Current Work:  Algorithms  Characterize distortion measures which also yield Bolzman distributions  General distortion measures


Download ppt "Bregman Information Bottleneck NIPS’03, Whistler December 2003 Koby Crammer Hebrew University of Jerusalem Noam Slonim Princeton University."

Similar presentations


Ads by Google