Presentation is loading. Please wait.

Presentation is loading. Please wait.

Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions with Jacques DROULEZ Laboratoire de Physiologie de la Perception et de l'Action, CNRS,

Similar presentations


Presentation on theme: "Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions with Jacques DROULEZ Laboratoire de Physiologie de la Perception et de l'Action, CNRS,"— Presentation transcript:

1 Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions with Jacques DROULEZ Laboratoire de Physiologie de la Perception et de l'Action, CNRS, Collège de France, Paris Laurens, Droulez, Biol. Cyber. 2006

2 Bayesian model Probabilistic computation Semicircular Canals (noisy) Otoliths (ambiguous) Priors P(motion) P(sensory inputs | motion) Internal model of sensors Motion estimates P(motion | sensory inputs) = P(sensory inputs | motion).P(motion) a Plausible Improbable G A F

3 A priori ● VOR dynamic ● Somatogravic effect

4 Geometrical aspects Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity Head position ∫∫ Angular velocity Head orientation Double integration H -1

5 Noise issues Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity ∫∫ Noise Angular velocity Head orientation Head position Double integration ? ? H -1

6 A priori Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity ∫∫ A priori Angular velocity Head orientation A priori Head position Double integration H -1 Noise

7 Visual informations Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity ∫∫ A priori Angular velocity Head orientation A priori Head position Double integration H -1 Noise Visual signal Noise

8 Plan ● Introduction to Bayesian inference ● Visuo-vestibular interactions (Monkey) ● 3D Stimulations (Monkey, Human)

9 Bayesian inference ● Probability exam: normal and pronged dice (Gezinkter Würfel) D1 : normalD2 : pronged 6 in 50% throws

10 Bayesian inference P(6 | D1) = 1/6 P(6 | D2) = 3/6 Likelihood : P(D1 | 6) = 1/4 P(D2 | 6) = 3/4 ?

11 Bayesian inference ● A priori: P(D1) = 9/10 P(D2) = 1/10

12 Bayesian inference ● Bayes formula P(6 | D2).P(D2) P(6) P(D2 | 6) = LikelihoodA priori

13 Bayesian inference Likelihood : P(6 | D1) = 1/6 P(6 | D2) = 3/6 A priori : P(D1) = 9/10 P(D2) = 1/10 A posteriori : P(D1 | 6) = k * 1/6 * 9/10 = 3/4 P(D2 | 6) = k * 3/6 * 1/10 = 1/4 ?

14 Bayesian inference ● More observations P(2 | D2).P(6 | D2).P(D2) P(6,2) P(D2 | 6,2) = Likelihood A priori

15 Bayesian inference and vestibular information Likelihood : P(Vest. Signal| Motion) A priori : P(Motion) F V = 0 P(Motion | Vest. Signal) = P(Vest. Signal| Motion).P(Motion)

16 Rotations around a vertical axis Angular acceleration ∫ Canal signal A priori 40 °/s Angular velocity Noise η 10 °/s Visual signal Noise η 7 °/s τ = 4 s H -1

17 Results: rotation in dark 050100 -0.5 0 0.5 1 RotationStop Rotation Vel. Estimated vel. (τ = 20 s) Vest. Signal (τ = 4 s) Velocity Storage time (s)

18 Optokinetic stimulation LightDark OKANOKN 020406080 0 0.5 1 Stimulation velocity(Ω) Estimated velocity (Ω) Raphan, Matsuo, Cohen, 1979

19 Optokinetic stimulation LightDark 020406080 0 0.5 1 No velocity storage Normal No canals Raphan, Cohen, Matsuo 1977 Stimulation velocity (°/s) OKN velocity (°/s)

20 Optokinetic stimulation LightDark 020406080 0 0.5 1 020406080 0 0.5 1 No canals Normal

21 Canals plugging Optokinetic stimulation RotationStop Light Dark Rotation in dark 01020 0 1 01020 0 0.5 1 Angelaki & al. 1996 τ = 0.1 s

22 Velocity storage 050100 -0.5 0 0.5 1 020406080 0 0.5 1 RotationStopLightDark Stimultation velocity Estimated velocity (Ω) ^ Vest. signal 'Velocity storage' (Ω t 0 ) ^ Optokinetic stimulation Rotation in Dark Raphan, Cohen

23 Equivalence with Raphan-Cohen model +

24 Conclusion ● Probabilistic modelling:  noise on vestibular signal σ = 10°/s  noise on visual signal σ = 7°/s  A priori on velocity σ = 40°/s LightDark 020406080 0 0.5 1

25 3D model Acceleration Tilt F ≈ G Gravito-inertial ambiguity G A F

26 3D model Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity ∫∫ A priori 40 - 30 °/s Angular velocity Head orientation A priori 3 - 5 m/s² Head position Double integration Noise η 10 °/s Implementation: particle filter

27 Somatogravic effect Acceleration A Y (m/s²) -20246810 0 2 4 Tilt roll (°) -20246810 0 20 30 G -A F

28 Somatogravic: canals plugged A Y (m/s²) -20246810 0 2 4 roll (°) -20246810 0 20 30 G -A F Acceleration Tilt

29 Tilt/translation discrimination Acceleration (m/s²) 051015 -4 -2 0 2 4 tilt (°) temps (s) 051015 -20 0 20 Acceleration (m/s²) 051015 -4 -2 0 2 4 tilt (°) 051015 -20 0 20 Normal Angelaki, 1999

30 Tilt/translation discrimination 051015 -4 -2 0 2 4 time (s) 051015 -20 0 20 051015 -4 -2 0 2 4 051015 -20 0 20 Canals plugged Angelaki, 1999 Acceleration (m/s²) tilt (°) Acceleration (m/s²) tilt (°)

31 Post-rotatory tilt Angular velocity  y (°/s) time (s) 020406080100120 -50 0 50 Angelaki, 1994

32 Post-rotatory tilt 6080100120 -60 -40 -20 0 20 6080100120 -20 0 20 time (s) 6080100120 -20 0 20 Angelaki, 1994

33 Centrifugation G A F Roll  r (°) 050100150 -20 0 20 40 60 time (s)

34 OVAR Benson, Bodin, 1965 Guedry, 1974 after Guedry, 1974 60 °/s 180 °/s

35 OVAR Head tilt  (°) 050100150200 0 100 time (s) 050100150200 0 100 200 α 180 °/s 050100150200 0 20 40 60 60 °/s Angular velocity (°/s)

36 OVAR F G F G -A Guedry, 1974 60 °/s 180 °/s

37 OVAR Ang. vel. a priori: σ Ω = 30°/s Acceleration a priori :σ A = 5 m/s² 60 °/s 78°/s180 °/s Rotation 2 σ Ω 2.6 σ Ω 6 σ Ω Acceleration (13 m/s²) 2.6 σ A 2.6 σ A 2.6 σ A Correia 1966, Lackner 1978, Mittelstaedt 1989, Bos 2002 (90°/s) Guedry 1965, Benson 1966, Correia 1966, Wall 1990

38 OVAR Denise, Darlot, Droulez, Berthoz 1989 Angular velocity (°/s) 050100150200 0 20 40 60 Angular velocity (°/s) time (s) 050100150200 0 20 40 60 Angelaki 2000, Kushiro 2002

39 OVAR time (s) Angelaki 2000, Kushiro 2002 020406080 0 20 40 60 Yaw velocity (°/s)

40 Motion sickness 0204060 10 -2 10 0 2 4 accélération linéaire rotation inclinaison post-rotatoire time (s) k.P(Sensory Signal)

41 Conclusion ● 3 hypothesis  Sensory signals uncertainty  A priori  Bayesian inference ● Lesion modelling (observer theory) ● Bayesian approach ● Extensions ● Predictions Laurens, Droulez, Biol. Cyber. 2006

42 Thanks !

43


Download ppt "Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions with Jacques DROULEZ Laboratoire de Physiologie de la Perception et de l'Action, CNRS,"

Similar presentations


Ads by Google