Download presentation
Presentation is loading. Please wait.
Published byHollie Anderson Modified over 9 years ago
1
Jean LAURENS Bayesian Modelling of Visuo-Vestibular Interactions with Jacques DROULEZ Laboratoire de Physiologie de la Perception et de l'Action, CNRS, Collège de France, Paris Laurens, Droulez, Biol. Cyber. 2006
2
Bayesian model Probabilistic computation Semicircular Canals (noisy) Otoliths (ambiguous) Priors P(motion) P(sensory inputs | motion) Internal model of sensors Motion estimates P(motion | sensory inputs) = P(sensory inputs | motion).P(motion) a Plausible Improbable G A F
3
A priori ● VOR dynamic ● Somatogravic effect
4
Geometrical aspects Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity Head position ∫∫ Angular velocity Head orientation Double integration H -1
5
Noise issues Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity ∫∫ Noise Angular velocity Head orientation Head position Double integration ? ? H -1
6
A priori Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity ∫∫ A priori Angular velocity Head orientation A priori Head position Double integration H -1 Noise
7
Visual informations Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity ∫∫ A priori Angular velocity Head orientation A priori Head position Double integration H -1 Noise Visual signal Noise
8
Plan ● Introduction to Bayesian inference ● Visuo-vestibular interactions (Monkey) ● 3D Stimulations (Monkey, Human)
9
Bayesian inference ● Probability exam: normal and pronged dice (Gezinkter Würfel) D1 : normalD2 : pronged 6 in 50% throws
10
Bayesian inference P(6 | D1) = 1/6 P(6 | D2) = 3/6 Likelihood : P(D1 | 6) = 1/4 P(D2 | 6) = 3/4 ?
11
Bayesian inference ● A priori: P(D1) = 9/10 P(D2) = 1/10
12
Bayesian inference ● Bayes formula P(6 | D2).P(D2) P(6) P(D2 | 6) = LikelihoodA priori
13
Bayesian inference Likelihood : P(6 | D1) = 1/6 P(6 | D2) = 3/6 A priori : P(D1) = 9/10 P(D2) = 1/10 A posteriori : P(D1 | 6) = k * 1/6 * 9/10 = 3/4 P(D2 | 6) = k * 3/6 * 1/10 = 1/4 ?
14
Bayesian inference ● More observations P(2 | D2).P(6 | D2).P(D2) P(6,2) P(D2 | 6,2) = Likelihood A priori
15
Bayesian inference and vestibular information Likelihood : P(Vest. Signal| Motion) A priori : P(Motion) F V = 0 P(Motion | Vest. Signal) = P(Vest. Signal| Motion).P(Motion)
16
Rotations around a vertical axis Angular acceleration ∫ Canal signal A priori 40 °/s Angular velocity Noise η 10 °/s Visual signal Noise η 7 °/s τ = 4 s H -1
17
Results: rotation in dark 050100 -0.5 0 0.5 1 RotationStop Rotation Vel. Estimated vel. (τ = 20 s) Vest. Signal (τ = 4 s) Velocity Storage time (s)
18
Optokinetic stimulation LightDark OKANOKN 020406080 0 0.5 1 Stimulation velocity(Ω) Estimated velocity (Ω) Raphan, Matsuo, Cohen, 1979
19
Optokinetic stimulation LightDark 020406080 0 0.5 1 No velocity storage Normal No canals Raphan, Cohen, Matsuo 1977 Stimulation velocity (°/s) OKN velocity (°/s)
20
Optokinetic stimulation LightDark 020406080 0 0.5 1 020406080 0 0.5 1 No canals Normal
21
Canals plugging Optokinetic stimulation RotationStop Light Dark Rotation in dark 01020 0 1 01020 0 0.5 1 Angelaki & al. 1996 τ = 0.1 s
22
Velocity storage 050100 -0.5 0 0.5 1 020406080 0 0.5 1 RotationStopLightDark Stimultation velocity Estimated velocity (Ω) ^ Vest. signal 'Velocity storage' (Ω t 0 ) ^ Optokinetic stimulation Rotation in Dark Raphan, Cohen
23
Equivalence with Raphan-Cohen model +
24
Conclusion ● Probabilistic modelling: noise on vestibular signal σ = 10°/s noise on visual signal σ = 7°/s A priori on velocity σ = 40°/s LightDark 020406080 0 0.5 1
25
3D model Acceleration Tilt F ≈ G Gravito-inertial ambiguity G A F
26
3D model Angular acceleration ∫∫ Otolith signal Canal signal Linear acceleration Linear velocity ∫∫ A priori 40 - 30 °/s Angular velocity Head orientation A priori 3 - 5 m/s² Head position Double integration Noise η 10 °/s Implementation: particle filter
27
Somatogravic effect Acceleration A Y (m/s²) -20246810 0 2 4 Tilt roll (°) -20246810 0 20 30 G -A F
28
Somatogravic: canals plugged A Y (m/s²) -20246810 0 2 4 roll (°) -20246810 0 20 30 G -A F Acceleration Tilt
29
Tilt/translation discrimination Acceleration (m/s²) 051015 -4 -2 0 2 4 tilt (°) temps (s) 051015 -20 0 20 Acceleration (m/s²) 051015 -4 -2 0 2 4 tilt (°) 051015 -20 0 20 Normal Angelaki, 1999
30
Tilt/translation discrimination 051015 -4 -2 0 2 4 time (s) 051015 -20 0 20 051015 -4 -2 0 2 4 051015 -20 0 20 Canals plugged Angelaki, 1999 Acceleration (m/s²) tilt (°) Acceleration (m/s²) tilt (°)
31
Post-rotatory tilt Angular velocity y (°/s) time (s) 020406080100120 -50 0 50 Angelaki, 1994
32
Post-rotatory tilt 6080100120 -60 -40 -20 0 20 6080100120 -20 0 20 time (s) 6080100120 -20 0 20 Angelaki, 1994
33
Centrifugation G A F Roll r (°) 050100150 -20 0 20 40 60 time (s)
34
OVAR Benson, Bodin, 1965 Guedry, 1974 after Guedry, 1974 60 °/s 180 °/s
35
OVAR Head tilt (°) 050100150200 0 100 time (s) 050100150200 0 100 200 α 180 °/s 050100150200 0 20 40 60 60 °/s Angular velocity (°/s)
36
OVAR F G F G -A Guedry, 1974 60 °/s 180 °/s
37
OVAR Ang. vel. a priori: σ Ω = 30°/s Acceleration a priori :σ A = 5 m/s² 60 °/s 78°/s180 °/s Rotation 2 σ Ω 2.6 σ Ω 6 σ Ω Acceleration (13 m/s²) 2.6 σ A 2.6 σ A 2.6 σ A Correia 1966, Lackner 1978, Mittelstaedt 1989, Bos 2002 (90°/s) Guedry 1965, Benson 1966, Correia 1966, Wall 1990
38
OVAR Denise, Darlot, Droulez, Berthoz 1989 Angular velocity (°/s) 050100150200 0 20 40 60 Angular velocity (°/s) time (s) 050100150200 0 20 40 60 Angelaki 2000, Kushiro 2002
39
OVAR time (s) Angelaki 2000, Kushiro 2002 020406080 0 20 40 60 Yaw velocity (°/s)
40
Motion sickness 0204060 10 -2 10 0 2 4 accélération linéaire rotation inclinaison post-rotatoire time (s) k.P(Sensory Signal)
41
Conclusion ● 3 hypothesis Sensory signals uncertainty A priori Bayesian inference ● Lesion modelling (observer theory) ● Bayesian approach ● Extensions ● Predictions Laurens, Droulez, Biol. Cyber. 2006
42
Thanks !
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.