Download presentation
Presentation is loading. Please wait.
Published byGervais King Modified over 9 years ago
1
Forces for extensions of mean-field PhD Thesis Marlène Assié Denis Lacroix (LPC Caen), Jean-Antoine Scarpaci (IPN Orsay) Extensions of mean-field ? Why a new force ? and which forces ? Some results Perspectives
2
Beyond the mean-field static :HF dynamical : TDHF mean-field Skyrme Forces LOW ENERGY INTERMEDIATE ENERGY E/A=5MeV/uE/A=150MeV/u Boltzmann term which force ? collisions important + mean-field Extended TDHF Bonche et al PRC 13 (1976) 1226 Skyrme Forces
3
Zero range force versus finite range force Time Dependent Density Matrix : function used : v=v 0 3 (r 1 –r 2 ) Extended TDHF : = C (| ) cut off k~range With a finite range force : range M. Tohyama Prog. Theor. Phys. 94(1995) S.Wang, W. Cassing, Nucl. Phys. A 652 (1999) D.Lacroix, S. Ayik, Ph. Chomaz, Prog. in Part. Nucl. Phys. 52(2004)
4
The collision term Forces in the collision term might be fitted to the nucleon- nucleon cross-section In the semi-classical limit p1 p2 p4 p3 loss gain k k’ interaction dependence
5
Li & Machleidt Cross Section for various Skyrme forces and the Gogny force Li & Machleidt Phys. Rev. C48 (1993); Phys. Rev. C 49 (1994) Total Cross Section (mb) Energy (MeV) Li & Machleidt parametrization
6
Li & Machleidt SGII SkM SkM* SkP SLy4 SLy7 Cross Section for various Skyrme forces and the Gogny force Total Cross Section (mb) Energy (MeV) Yildirim et al, Eur. Phys. J. A 10 (2001) ; Yilmaz et al, Phys. Lett. B 472 (2000)
7
Cross section with Skyrme forces Yildrim et al, Eur. Phys. J. A 10 (2001) ; Yilmaz et al, Phys. Lett. B 472 (2000) Cross section calculated with the Skyrme force :
8
Li & Machleidt SGII SkM SkM* SkP SLy4 SLy7 Gogny Cross Section for various Skyrme forces and the Gogny force Total Cross Section (mb) energy (MeV) None of these forces reproduce nucleon- nucleon in medium cross-section new force
9
Fitted force Force of finite-range and separable finite-range already used for pairing correlations Duguet PRC 69 (2004) separable : simpler numerically energy (MeV) Gaussian (G) Total cross section (mb) Fit with Gaussian = -655 MeV fm3 ² = 0.279 fm2 0 =0,18 fm -3 Li & Machleidt fit (G) Gaussian +constant (G+C) Fit with Gaussian + c = -137 MeV fm3 1 ²= 1.54 fm2 c=1.34 0 =0,18 fm -3 energy (MeV)
10
Density dependence Li & Machleidt parameterization E=50MeV Parameterization of Li & Machleidt density (fm-3) Total cross section (mb) Li & Machleidt Phys. Rev. C48 (1993); Phys. Rev. C 49 (1994)
11
Density dependence Li & Machleidt parameterization Gaussian Gaussian + constant E=50MeV Density dependence (DDG) similar as Skyrme introduced to reproduce a density dependence Parameterization of Li & Machleidt density (fm -3 ) Total cross section (mb) Li & Machleidt Phys. Rev. C48,1702; Phys. Rev. C 49, 566
12
Fit with the density dependent function Fit method : 2 dimensions fit on the energy and the density with 4 parameters E=50 MeV E=100 MeV density (fm -3 ) energy (MeV) =0.05 fm -3 =0.15 fm -3 Total cross section (mb) Li & Machleidt fit with the density dependent force (DDG)
13
Fit with a sum of Gaussian and density dependence Fit method : 2 dimensions fit on the density and the energy with 5 parameters energy (MeV) Total cross-section (mb) =0.05 fm -3 =0.15 fm -3 Li & Machleidt fit with the density dependent force (DDGC) density (fm -3 ) E=100 MeV E=50 MeV
14
Summary 2 forces which reproduce density and energy dependence of the nucleon-nucleon cross section particle-hole channel Skyrme force particle-particle channel hole-hole channel pairing force Case of pairing Case of 2 body correlations particle-hole channel Skyrme force 2 particle- 2 hole channel separable finite-range force should use the same force independent
15
Comparison with the Skyrme force when k 0 and =0 Skyrme forcesGaussian (G)Gaussian+ constant (GC) Gaussian density dependent Gaussian+ constant density dependent Up to 10 parameters2 parameters3 parameters4 parameters5 parameters t0=-2931 to -1057 MeV.fm 3 - 655 MeV.fm 3 - 748 MeV.fm 3 - 2416 MeV.fm 3 -2572 MeV.fm 3 t1=235 to 970 MeV.fm 5 183 MeV.fm 5 491 MeV.fm 5 1038 MeV.fm 5 1896 MeV.fm 5 t2=-556 to 107 MeV.fm 5 Neglected t3=8000 to 18708 MeV.fm (3+3 ) 13107 MeV.fm 3+3 13891 MeV.fm 3+3 =1/6 to 1 0.17 Skyrme Force Gaussian t 0 t 1 -2 ² Gaussian density dependent t 0 t 1 -2 ² t3 c3
16
Skyrme Gaussian density Gaussian + c + density Li & Machleidt t0=-2572 MeV.fm3 t0= -2416 MeV.fm3 t0=-2645 MeV.fm3 t1= 1896 MeV.fm3 t1= 1038 MeV.fm3 t1= 410 MeV.fm3
17
Perspectives Time Dependent Density Matrix (TDDM) W. Cassing, S. J. Wang, Z. Phys. A, 328 (1987) truncation of the BBGKY hierarchy takes into account all the two body correlations (extension of HF) Skyrme force separable finite- range force Perspectives : study of correlations between two neutrons in borromean nuclei Experiment planned for July 2006 at GANIL
18
Skyrme Gaussian Gaussian + c Li & Machleidt
19
Skyrme Gaussian density Gaussian + c + densite Gaussian Gaussian + c Li & Machleidt Comparison of slopes and values in zero for all fits
20
About the Skyrme force REALISTIC FINITE-RANGE FORCE In momentum space In a nucleus short-range expansion ZERO-RANGE FORCE
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.