Presentation is loading. Please wait.

Presentation is loading. Please wait.

A Research Institute of the University of Central Florida FBC Mechanical Technical Advisory Committee Meeting June 25, 2014 A Review of Home Airtightness.

Similar presentations


Presentation on theme: "A Research Institute of the University of Central Florida FBC Mechanical Technical Advisory Committee Meeting June 25, 2014 A Review of Home Airtightness."— Presentation transcript:

1 A Research Institute of the University of Central Florida FBC Mechanical Technical Advisory Committee Meeting June 25, 2014 A Review of Home Airtightness and Ventilation Approaches for Florida Building Commission Research

2 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Tasks Task 1: Conduct a literature review, examination of experimental data, and calculations of energy impacts of using or not using various types of ventilation systems. Task 2: Develop alternative approaches to achieving acceptable levels of ventilation while avoiding the risks associated with super-tight home enclosures and potential mechanical system failures. 2

3 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Literature Review Over 40 articles, research reports, presentations and code documents were reviewed. Information sources included: American Council for an Energy-Efficient Economy (ACEEE) American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Building Science Corporation (BSC) Florida Solar Energy Center (FSEC) International Code Council (ICC) Lawrence Berkeley National Laboratory (LBNL) US Environmental Protection Agency (EPA) 3

4 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Wide consensus that both controlling infiltration and providing mechanical ventilation is necessary for homes, but determining appropriate levels for each is much more involved. Considerations must include: – Energy use – Indoor humidity impacts – Combustion safety – Ventilation system performance – Maintenance 4 Literature Review

5 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Cooling Season Infiltration Loose House – Higher moisture load from outside than tight house – Heat (sensible) load over entire cooling season similar to tight due to small indoor / outdoor temperature diff. Tight House – Small relative humidity improvement in the house – Very small energy savings 5 High dew point outside AC runs and removes moisture A/C

6 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Heating Season Infiltration 6 Low dew point outside Heater runs, moisture not removed A/C Loose House – More dry air from outside than tight house – When heating, wind speeds and temperature difference larger than when cooling so there is more heating load created than for tight house. Tight House – Higher relative humidity due to interior moisture generation-- possible condensation if single pane glass or metal frames – About 15% heating savings

7 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Air Tightening 7 Air tightening allows control over where and how much outside air enters a house Measured 2009 Florida Code home average ACH50 = 5.6 (31 home sample) 2014 Code requirement is <= 5 ACH50 Air tightening shown to provide limited summer energy savings and more significant percentage savings in winter Mechanical ventilation energy use may exceed air tightening savings

8 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida 8 Arguments for Build it Tight Control infiltration sources and rates Reduce peak winter drafts and loads Can use continuous mechanical ventilation to deliver required air year round

9 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Unbalanced airflow (such as exhaust fans, unbalanced return air or duct leakage) can depressurize the interior space leading to combustion appliance spillage, back-drafting and flame roll-out Lack of fresh air when mechanical ventilation system fails Can create winter moisture issues In Florida, small savings from tight to extremely tight 9 Arguments Against Extremely Tight

10 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Health related research almost non existent Agreement that there are indoor pollutants Quantity of outside air required has been more of a consensus than a science 2012 IMC / 2014 FMC: continuous ventilation at 0.35 ach but not less than 15 cfm/person 2012 IRC / 2014 FRC: continuous ventilation rate provided by Table M1507.3.3(1) 10 How Much Outside Air?

11 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Movement toward health-based whole house ventilation; LBNL researching and working to incorporate a health metric into the 2016 version of ASHRAE 62.2 11 How Much Outside Air?

12 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Limited whole house ventilation performance and failure research results available Significant number of systems not complying with Code requirements Component failure Installation issues Homeowner understanding and maintenance 12 Ventilation Performance and Failure

13 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Recommendations “Reasonably tight” with neutral or slightly positive mechanical ventilation 13

14 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Specific recommendations include: Do not require further air tightening beyond the 2012 IECC level of 5 ACH50 – Savings too small – Potentially significant health and safety risks from mechanical ventilation failure or unbalanced airflow if house gets too tight Focus on sealing pathways between indoors and attic, garage and crawlspace Move toward health-based ventilation standards- will require collaborative research Educate public about pollutant sources and controlling them in homes (Green home programs attempt this) 14

15 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida 15 Specific recommendations include: Ventilation system design – Flexible airflow rate: provides flexibility if/as recommendations change and allows seasonal adjustments – High efficiency fans: allows oversized fans to run at low speeds (for runtime vent); also may soon be possible to specify 0.2 or 0.3 Watts/cfm instead of 2014 FEC specification of ~0.35 Watts/cfm

16 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Ventilation system design (cont.) – Positive pressure or balanced: provides air source control and reduces risk of exhaust dominated systems driving moist air through envelopes leading to mold and mildew at low permeability locations – Moisture removal: have means to remove moisture introduced by the ventilation air (DBPR Indoor RH research) 16 Specific recommendations include:

17 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida 17 Ventilation system design (cont.) – Proper intake locations: 2014 FEC requirement not allowing ventilation air to come from attics, crawlspaces, attached garages or outdoor areas close to pools or spas should be added to IECC – Also do not allow sources near insecticide spray locations, car exhaust, AC condensers or dryer exhausts Specific recommendations include:

18 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Specific recommendations include: 18 Balanced ventilation systems as one option – Supply and exhaust ducts – Allows balanced or positive house pressure – Requires first cost and energy use of two fans – Enthalpy (energy) recovery ventilation (ERV) option reduces heat and moisture gains from ventilation air, although not effective at times in swing seasons; also maintenance issues

19 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Specific recommendations include: 19 Supply only ventilation systems as another option – Energy use and first cost of one fan – Can be combined with dedicated outdoor air systems (DOAS), standard air conditioners and/or dehumidifiers to remove moisture – Runtime option + appropriate controls can be effective during peak cooling and heating seasons; can raise humidity during swing seasons

20 FLORIDA SOLAR ENERGY CENTER — A Research Institute of the University of Central Florida Specific recommendations include: 20 Consider mandating some type of alarm system for when a whole-house ventilation system failure is detected (limited field studies raise concerns about longevity, homeowner operation and maintenance of these systems) Initiate Florida whole-house ventilation system effectiveness and failure study.


Download ppt "A Research Institute of the University of Central Florida FBC Mechanical Technical Advisory Committee Meeting June 25, 2014 A Review of Home Airtightness."

Similar presentations


Ads by Google