Download presentation
Presentation is loading. Please wait.
Published byRalph Burke Modified over 9 years ago
1
QBASE Engineering © QBASE Engineering Sdn Bhd QBASE Engineering QBASE Engineering Overview This training is designed to build-up the participant’s knowledge leading to improved skills in applying mechanical dimension/tolerance analysis, dimension/ tolerance stack-up analysis, and dimension/tolerance allocation methodologies. Tolerance and tolerance stack-up analyses can be performed either by using Worst Case Methods (WCM) or statistical methods. The statistical method is more rigorous and it uses either the RSS (Root-sum-of-Squares) or MRSS (modified Root-Sum-of-Squares) approach. Tolerance analysis is performed to determine or to assess the characteristics of part features such as minimum and maximum wall thickness, or distance between features to see if they met the specific dimension or tolerance or functional requirements. The stack-up tolerance analysis on the other hand is used to calculate how each piece-part dimension and tolerance contributed towards the final assembly’s dimension and tolerance.The final assembly’s dimension and tolerance is then compared against the required dimension and tolerance to determine whether the required functional performance goals are met. If the final assembly performance requirement s is not met, then various tradeoff strategies can be employed to resize the dimension and tolerances of each piece-part without negatively affecting its manufacturability and cost. Design engineers, by employing any of these methods, can determine if the form and fit of related parts and assemblies will satisfy their intended function before that part and assemblies are actually produced. Manufacturing, inspection, assembly and service personnel can also use these techniques to review and/or troubleshoot problems on existing designs, to verify that their in-process steps will have the capability to meet the desired objective, or even to find ways to improve performance and reduce costs. There are two methods used to specify dimensions and tolerances: traditional +/- dimensioning Tolerances ( which still exist in many mechanical drawings) and geometric dimension and tolerancing, or GD&T. Since the +/- dimensioning and tolerancing is still commonly used in part and assembly drawings, and this tolerance stack- up analysis training will cover both methods. However, as an extension of GDT training, greater emphasize will be placed on how to calculate Tolerance Stack-ups analysis and tolerance allocation on parts and assemblies based on GDT based drawings. The ultimate goal of this training is to help the participants understand why GD&T is a much better system from tolerances point of view and also to demonstrate how Tolerance Analysis/allocation will ultimately prove that the selected dimensioning and tolerancing scheme works. This training will also demonstrate that the only way to precisely specify the required geometric conditions is through the use of GD&T. This training will also cover how the results of the tolerance stack-up analyses should be documented and communicated either for sharing purposes or to convince someone to make changes to those dimensions or tolerances. The techniques must be used to ensure that the dimension and tolerance related problems are solved correctly and that the results will be understood by all parties involved. The knowledge in GD&T and its principles are therefore pre-requisite to this training. MECHANICAL TOLERANCE STACK-UP AND ALLOCATION FOR +/- AND GD&T DRAWINGS
2
QBASE Engineering © QBASE Engineering Sdn Bhd Course Objectives At the conclusion of this training the participant will have knowledge to be able to : Explain various tolerances available in +/- system and GDT system such as part size tolerance, Bonus tolerance and datum shift. Explain the relationship between piece-part tolerances and final part assembly tolerances and performance goal Understand parts variation and source of variation and these variations affect assembly variation and cost Explain the differences, the benefit, strength and weaknesses, and advantage/disadvantage between the various stack-up analysis methods. Understand relationship between statistical distributions, nominal values, standard deviations and its effect to the final assembly tolerances. At the conclusion of this training the participant will have the necessary skills to be able to: Calculate the tolerance availability for a part and/or part features. Set-up tolerances that minimize cost and met the performance requirements How to convert various types of tolerances into equal bilateral tolerances. (+/-) Perform stack-up analysis of the final assembly based on each individual part tolerances either using WCM or RSS or MRSS methodology either for part stated in +/- tolerances or GDT based tolerances. Modify the parts tolerances or dimension to adjust the final assembly tolerance to meet the performance goal. Perform tradeoff analysis when using various tolerance stack-up analysis methods. Prepare Stack-up analysis for management review and/or design change proposal Prepare the sketch or cartoon gage to visualize the extreme mating cases Apply Stack-up tolerance analysis using software. Training Duration 2(two) days 9:00 p.m to 5:00 pm Pre-requIsite Knowledge or able to read technical drawing Able to read part drawings and assembly drawings Completed GD&T Training Calculators or Scientific Calculator Target Audience Design Engineer (Mechanical) Manufacturing and/or Assembly Engineer Quality Assurance Engineer/Manager Quality Control Engineer/Manager Product and/or System engineer/Manager
3
QBASE Engineering © QBASE Engineering Sdn Bhd Training Delivery English and/or Bahasa Malaysia Training Methods Classroom lecture on concept, methodologies, theories and techniques Exercises on selected topics Workshop and case studies Discussion on actual project ( bring drawings) Test on end of each module Course Fee RM1,300 per pax* (public Training ) Contact QBASE For special Discounts * maximum 10 participants (additional RM600 per participant if exceeded 10) Fee include training manual and appropriate forms and certificate of completion Level 3 training assessment. Call QBASE Engineering for in-house training
4
QBASE Engineering © QBASE Engineering Sdn Bhd Module 1: Overview of Dimensions and Tolerance o Dimensions/Tolerance formats o Converting to equal bilateral format o Part drawing vs. assembly drawing Overview of Size Tolerances, Bonus Tolerances and Datum shift Statistical Distribution- Nominal value and variation ( +/-3 sigma form mean) Tolerances vs. manufacturing capability vs. producibility Piece-part Tolerances vs. Assembly tolerance Module 6: Tolerance analysis and stack-up with GD&T Form Controls Positional Control o Floating and fixed fasteners Orientation Control Profile Control Cartoon Gage for tolerance and stack-up analysis for various material conditions Loop Diagram and Dimension Vectors Calculations Maximum and Minimum dimension Determining tolerance Module 2: Overview of Geometric Dimensional Rules Material conditions and its effect on final assembly. Calculation of Bonus tolerance and datum shift Worst case boundaries Module 7: Tolerance analysis /stack-up /allocation reports Design Review Process Documentation Standard Report Module 3: Tolerance Analysis Analysis for +/- Dimensional system Analysis for wall thickness Analysis for distance between features Gap analysis Module 8: Advanced Dimensional Management Methods Module 4: Tolerance Stack up for +/- Dimension Step for Tolerance analysis Loop Diagrams ( vertical vs. Horizontal Loop) Determining Dimensions Sensitivities Dimension Vector (direction) Calculation of Mean Value (nominal) Worst case Methods RSS method MRSS Methods Module 9: Software for tolerance analysis, stack-up and allocation. Module 5: Tolerance Allocations Steps by step calculation for Tolerance Allocation RSS and MRSS methods Dynamic and Static RSS Course Outlines
5
QBASE Engineering © QBASE Engineering Sdn Bhd Day 1Day 2 9:00-10:00 Module 1: Overview of Dimensions and Tolerance o Dimensions/Tolerance formats o Converting to equal bilateral format o Part drawing vs. assembly drawing Overview of Size Tolerances, Bonus Tolerances and Datum shift Statistical Distribution- Nominal value and variation ( +/-3 sigma form mean) Tolerances vs. manufacturing capability vs. producibility Piece-part Tolerances vs. Assembly tolerance Module 6: Tolerance analysis and stack-up with GD&T Form Controls Positional Control o Floating and fixed fasteners Orientation Control Profile Control Cartoon Gage for tolerance and stack-up analysis for various material conditions Loop Diagrams/vector Calculations Maximum and Minimum dimension Determining tolerance 10:00-10:15Morning Break 10:15 – 1:00 Module 2: Overview of Geometric Dimensional Rules Material conditions and its effect on final assembly. Calculation of Bonus tolerance and datum shift Worst case boundaries WORKSHOP & CASE STUDIES Module 3: Tolerance Analysis Analysis for +/- Dimensional system Analysis for wall thickness Analysis for distance between features Gap analysis Continuation of Module 6.. 1:00-2:00Lunch Break 2:00-3:15 Module 4: Tolerance Stack up for +/- Dimension Step for Tolerance analysis Loop Diagrams ( vertical vs. Horizontal Loop) Dimension Vector (direction) Calculation of Mean Value (nominal) Worst case Methods RSS method MRSS Method Module 7: Tolerance analysis /stack-up /allocation reports Design Review Process Documentation Standard Report Module 7: Tolerance analysis /stack-up /allocation reports Design Review Process Documentation Standard Report 3:15 – 3:30Afternoon Break 3:30-5:00Module 5: Tolerance Allocations Steps by step calculation for Tolerance Allocation Module 9: Software for tolerance analysis, stack- up and allocation. Training Agenda
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.