Download presentation
Presentation is loading. Please wait.
Published byShonda Fitzgerald Modified over 9 years ago
1
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan. 15-21 GT ( ) : Important weak response GT transitions of Astrophysics Interest
2
Supernova Cycle
3
mainly by & K.L &G.M-P Rev.Mod.Phys.75(’04)819 (A,Z)=nuclei in the Fe, Ni region Crucial Weak Processes during the Collapse
4
SM-cal: GT- from Ni isotopes E. Caurier et al., NPA653 (‘99) 439 KB3G int. (p,n) exp. SM cal.
5
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, January 15-21 GT ( ) : Important weak response decay : absolute B(GT), limited to low-lying state CE reaction : relative B(GT), highly Ex region decay isospin symmetry CE reaction GT transitions of Astrophysics Interest
6
Direct Reactions with Light Projectiles Projectile 3 He Target Coulomb Excitation Elastic Scattering Inelastic Scattering Pick-up Stripping Charge-exchange Similarity with decay! by Berta Rubio |i> |f> interaction (operator) Ejectile t
7
**( 3 He,t): high resolution and sensitivity !
8
9 Be( 3 He,t) 9 B spectrum (at various scales)
9
9 Be( 3 He,t) 9 B spectrum (II) Isospin selection rule prohibits proton decay of T=3/2 state!
10
Key Words High Resolution In Charge Exchange Reactions --at Intermediate Incident Energies-- ( 3 He,t) reaction : one order better resolution than in a (p,n) reaction Comparison with decay Similarity of Active Operators Gamow-Teller operator in decay (weak interaction) Spin-isospin interaction in reactions (strong interaction) Isospin Symmetry of Nuclear Structure Isospin-Symmetry GT Transitions are expected
11
**B(GT) derivation in Charge Exchange Reactions Interaction & Reaction Mechanism
12
B(GT) derivation
13
Nucleon-Nucleon Int. : E in dependence at q =0 V VV VV VV central-type interactions Simple one-step reaction mechanism at intermediate energies!
14
N.-N. Int. : & Tensor- q-dependence TT largest at q=0 ! larger than others ! Love & Franey PRC 24 (’81) 1073
15
B(GT) derivation
16
Resolutions Now and Then Y. Fujita et al., EPJ A 13 (’02) 411. H. Fujita et al., Dr. Th. & PRC
17
**Isospin Symmetry Structure in a Mass A Isobar System
18
T=1 system 50 Cr A=50 system Coulomb Energy: important 50 Mn 50 Fe
19
T=1 symmetry : Structures & Transitions 50 Mn Z=25, N=25 50 Fe Z=26, N=24 50 Cr Z=24, N=26
20
**High Resolution Experiment
21
Grand Raiden Spectrometer Large Angle Spectrometer
22
RCNP Ring Cyclotron
23
Beam line WS-course T. Wakasa et al., NIM A482 (’02) 79. Grand-Raiden Spectrometer RCNP Ring Cyclotron High-dispersive WS-course
24
Matching Techniques
25
**GT Transitions in fp--shell Nuclei -important in supernova explosion-
26
Onion Structure in a Red Giant
27
mainly by & can be studied by ( 3 He,t) K.L &G.M-P Rev.Mod.Phys.75(’04)819 (A,Z)=nuclei in the Co, Fe, Ni region Crucial Weak Processes during the Collapse
28
(p, n) spectra for Fe and Ni Isotopes Rapaport & Sugarbaker Rev. Mod. Phys. (’94)
29
54 Fe(p,n) & 54 Fe( 3 He,t) B.D. Anderson et al., (p, n) at IUCF
30
( 3 He,t) spectra: T=1, pf-shell nuclei (I) T. Adachi et al. PRC, in press
31
( 3 He,t) spectra: T=1, pf-shell nuclei (II)
32
26 Mg Z=12, N=14 26 Al Z=13, N=13 26 Si Z=14, N=12 23 Na Z=11, N=12 23 Mg Z=12, N=11 T=1 symmetry Connection between Charge Exchange & decay T=1/2 symmetry 0 + 1 +
33
**Derivation of “absolute” B(GT) values - for A=50 system-
34
50 Cr( 3 He,t) 50 Mn
35
Isospin Symmetry Transitions: 50 Cr( 3 He,t) 50 Mn -decay 50 Fe Q EC =8.152(61) MeV T 1/2 =0.155(11) s 0.651 (Z,N)=(24,26)(25,25)(26,24)
36
50 Fe -decay measurement 50 Fe S p =4.59 + decay 0 + Q EC =8.152(61) MeV T 1/2 =0.155(11) s No feeding ratios!
37
50 Cr( 3 He,t) 50 Mn -decay 50 Fe B(GT)=0.60(14) Q EC =8.152(61) MeV T 1/2 =0.155(11) s 0.651 *assuming no brancing to higher excited states!
38
**Reconstruction of decay from ( 3 He,t) - assuming isospin symmetry -
39
Simulation of -decay spectrum -decay feeding ratio is expected !
40
Absolute B(GT) values -via reconstruction of -decay spectrum- -decay experiment T 1/2 =0.155(11) s New value B(GT)=0.50(13) *20% smaller than the -decay: 0.60(16) Absolute intensity: B(GT) Y. Fujita et al. PRL 95 (2005) B(F)=N-Z Relative feeding intensity from ( 3 He,t) t i =partial half-life
41
Important messages *The largest uncertainty comes from the error of T 1/2 measurement in the -decay *Other error sources Q-value of the -decay Uncertainties of peak yields Accurate T 1/2 measurement is important ! **Measurement of T 1/2 -value is easier ! (Measurement of branching ratio is more difficult)
42
Study of Mirror GT Transitions for T=1 System 54 Fe Z=26, N=28 54 Co Z=27, N=27 54 Ni Z=28, N=26 Leuven Valencia Surrey Osaka
43
Summary Words High Resolution ( 3 He,t) reaction : one order better resolution than in a (p,n) reaction good tool to study B(GT) distribution (relative values) Isospin Symmetry Combined Analysis based on Isospin Symmetry ( 3 He,t) IV-spin interaction in reactions (strong interaction) Gamow-Teller operator in decay (weak interaction) A New Step toward the accurate determination of B(GT) (absolute values)
44
High resolution 54 Fe( 3 He,t) spectrum T. Adachi et al. Target nuclei under study : T 0 =1 46 Ti, 50 Cr, 54 Fe, 58 Ni T 0 =2 48 Ti, 52 Cr, 56 Fe, 60 Ni T 0 =3 50 Ti, 62 Ni T 0 =4 64 Ni
45
**Thank you for your attention !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.