Download presentation
Presentation is loading. Please wait.
Published byRobert Hart Modified over 9 years ago
1
1SC2 2014/2015 Department of Electronics Telecommunications and Informatics University of Aveiro Subject: Sistemas de Controlo II (Control Systems II) 2014/2015 Lecture 1 (12/Feb 2015) Petia Georgieva (petia@ua.pt)
2
SYLLABUS 0. Introduction and historical perspectives Continuous (analog) control systems - Petia Georgieva Chapter 1. Review of the main topics of control system theory (SC1) (chapters I-VII of the book of Prof. Melo) Chapter 2. Basic compensators (chapter VIII) Chapter 3. PID compensator (chapter VIII) Chapter 4. State-feedback control (chapters X, XI) Digital control systems - Telmo Cunha Chapter 5. Design of discrete-time controllers through emulation Chapter 6. Controller design in the discrete time Chapter 7. Direct digital control Chapter 8. Identification of discrete-time models through the least squares technique Chapter 9. RST controllers – polynomial approach 2
3
0. Introduction 3 System – An interconnection of elements and devices for a desired purpose. Control System – An interconnection of elements and devices that will provide a desired response. The interaction is defined in terms of i.System input ii.System output iii.Disturbances
4
Historical Perspectives of Control Systems 1. Ancient Greece (1 to 300 BC) - water float regulation, water clock, automatic oil lamp 2. Cornellis Drebbel (17 th century) - Temperature control 3. Industrial revolution (18 th century) – development of steam engine. How to control the speed of rotation of the engine without human intervention ? 4. 18th Century (1769 ?) James Watt’s flyball governor for the speed control of a steam engine (the first system for automatic control of a machine).
5
Watt’s Flyball Governor (speed limiter)
6
Historical Perspectives of Control Systems Laplace (1749-1827) and Fourier (1758-1830) – developed essential mathematical framework for theoretical analysis. Maxwell (1868) in his paper “On governors” developed the differential eq. model of the governor, linearized around an equilibrium point and proved that the stability of the system depends on the roots of a characteristics equation having negative real parts. Hurwitz (1875) and Routh (1905) - developed stability criteria for linear systems. Lyapunov (1983), russian mathematician, developed stability criteria for non-linear systems. Bell Telephone Labs (1930) - work on feedback amplifier design based on the concept of frequency response and backed by the maths of complex variables. Nyquist (1932) developed stability criteria using frequency domain methods. Bode (1945) and Nickols extended it to the most comonly used control system design in the frequncy domain. Evans (1948) –based on the work of Maxwell and Routh, Evans developed the Root Locus method to display grafically the roots of the characteristic eq.
7
SC1 (Routh- Hurwitz table & Root Locus method) Routh- Hurwitz table Root Locus method ( Matlab rlocus )
8
Open-Loop Control System Single Input-Single Output (SISO) Example of Open Loop Control System: Missile Launcher
9
Example of Open Loop Control System : control of the speed of a turntable
10
Closed-Loop Control System Single Input-Single Output (SISO) Sensor Actuator Process Controller + + Set-point or Reference input Actual Output Error Controlled Signal Disturbance Manipulated Variable Feedback Signal + - + + Has a negative feedback to compare the actual output to the desired output response.
11
Example of a SISO Closed Loop Control System (negative feedback) Missile Launcher System
12
Example of a Closed Loop Control System model of the national income
13
Example of a Closed Loop Control System of the speed of a turntable
14
Multi Input Multi Output (MIMO) Closed Loop Control System Desired Output Response Measurement Output Variables Controller Process
15
Example of MIMO Closed Loop Control System - Boiler Generator
16
Example of a Modern MIMO Control System
17
The Future of Control Systems
18
18 CAMBADA IEETA ROBOTICS – part of the future control systems 2008: World champion of middle size robocup 2009-2015: Leading position in all national&intern. competitions
20
Chapter 1:Review of the main topics of control system theory (SC1) 1.Linear system modeling 2.Time (transient) response of 1 st and 2 nd order systems 3.Stability (Routh-Hurwitz) 4.Control architectures (open-loop; closed-loop) 5.Negative feedback systems 6.Root-locus 7.Steady-state response (steady-state error) 20
21
What is a Mathematical Model? A set of mathematical equations (e.g., differential equations) that describes the input-output behavior of a system. What is a model used for? System Simulation Prediction/Forecasting Control System Design Design/Performance Evaluation
22
Dynamic Systems A system is said to be dynamic if its current output may depend on the past history as well as the present values of the input variables. Mathematically, Example: A moving mass M y u Model: Force=Mass x Acceleration
23
Example of a Dynamic System Velocity-Force: Therefore, this is a dynamic system. If the torque force ( bdy/dt ) is included, then Position-Force:
24
Homework –find the models (SC1 examples) 24
25
Mathematical Modeling Basics Mathematical model of a real world system is derived using a combination of physical laws (1 st principles) and/or experimental tools. Physical laws are used to determine the model structure (linear or nonlinear) and order. The parameters of the model are often estimated and/or validated experimentally. Mathematical model of a dynamic system is often expressed as a system of differential (difference in the case of discrete-time systems) equations.
26
Mathematical Modeling Basics A nonlinear model is often linearized about a certain operating point. Model reduction (or approximation) may be needed. Numerical values of the model parameters are often approximated from experimental data by curve fitting.
27
Example: Accelerometer Consider the mass-spring-damper (may be used as accelerometer or seismograph) system: f s ( y ): the spring reaction force; nonlinear function of y=x-u f d ( y ): the torque reaction force; nonlinear function of y=x-u Newton’s 2nd law Linearized model: M u x
28
Transfer Function (TF) Transfer Function is the algebraic input-output relationship of a linear time-invariant system in s domain. G(s) U Y Example: Accelerometer System
29
Comments on TF Transfer Function is a property of the system independent from the input-output signals. It is an algebraic representation of differential equations applying the Laplace Transformation. Systems from different disciplines (e.g., mechanical, chemical, electrical) may have the same transfer function
30
Mixed Systems Most real world systems (processes, plants) are of the mixed type, e.g., electromechanical, hydromechanical, etc Each subsystem within a mixed system can be modeled as single discipline system first. The subsystems are integrated into the entire system applying for example the block diagram rools. Overall mathematical model may be assembled into a system of equations, or a transfer function.
31
Electro-Mechanical Example Mechanical Subsystem u iaia dc RaRa LaLa J B Input: voltage u Output: Angular velocity Elecrical Subsystem (loop method):
32
Electro-Mechanical Example u iaia dc RaRa LaLa Torque-Current: Voltage-Speed: Combing previous equations results in the following mathematical model: B Power Transformation: where K t : torque constant, K b : velocity constant For an ideal motor
33
Transfer Function of Electromechanical Example Taking Laplace transform of the system’s differential equations with zero initial conditions gives: Eliminating I a yields the input-output transfer function of 2nd order system. u iaia KtKt RaRa LaLa B
34
Reduced Order Model Assuming small inductance, L a 0 we get a transfer function of 1st order system.
35
What is the Control System Engineer trying to achieve? 35 First, to understand well the application in order to apply a suitable control system. A good control system has to – generate a response quickly and without strong oscillations ( good transient response ), – have low error once settled ( good steady-state response ), – and will not oscillate wildly or damage that system ( stability ).
36
Summary 36 The central problem in control is to find a technically feasible way to act on a given process so that the process behaves, as closely as possible, to some desired behavior. Furthermore, this approximate behavior should be achieved in the face of uncertainty of the process and in the presence of uncontrollable external disturbances acting on the process.
37
- 37 - BIBLIOGRAPHY (in Portugues)
38
- 38 - BIBLIOGRAPHY
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.