Download presentation
Presentation is loading. Please wait.
Published byJustina Sherman Modified over 9 years ago
1
Data Structures Mugurel Ionu Andreica Spring 2012
2
Grading Activity during the Laboratory – 10% Homework Assignments – 40% –4 homework assignments – 10% each Exam – 50% [optional] Course Tests (bonus: up to 10% of the final grade; maybe less) Must obtain at least 25% of the final grade (from Lab Activity + Homework Assignments + Course Tests) in order to be allowed to participate in the exam
3
Course Topics Introduction to C++ Programming Abstract Data Type – concept Stack Queue Linked Lists Graphs Hash Tables Trees (Binary Trees, Binary Search Trees, Balanced Binary Search Trees) Heaps Disjoint Sets Other Advanced Topics [ if time allows ] – not for exam
4
Introduction to C++ Programming Similar to C Programming –Inclusion of headers –Definition of types/classes –Declaration of global variables –Definition of functions –The main function Extra C++ Concepts: –C++ classes May contain both variables (fields) and functions with public/private/protected access specifications Inheritance (only very basic aspects – the rest is handled in the OOP course) –Templates (generalized classes, functions, variables, etc.) Usually used for specifying data types
5
Common C/C++ Types Basic types –int –char –float –double –void – only for function return values Structured data types –struct s { int x; char y[2], z; double w }; Classes Pointer types –int*, int**,... –char*, char**,... –float*, float**,... –double*, double**,... –void*, void**,... –Pointers to structs –Pointers to classes Defining (multidimensional) arrays –int v[100] // a static array named v with 100 elements, indexed from 0 to 99 –int u[100][150], v[10][20][30], w[10][20][30][40],... –char u[100], v[10][20], w[10][20][30],... –float u[100], v[10][20], w[10][20][30],... –struct s u[100], v[10][20], w[10][20][30],... –...
6
Classes in C++ class class_name { access_specifier_1: members; methods; access_specifier_2: members; methods;... constructor // same name as the class destructor // ~class_name } Access specifier = public / private / protected A class may contain variables and methods
7
Sample C++ Program with Classes #include class MyClass { private: int x, cnt; double v[100]; public: int y; void setX(int value) { x = value; } int getX() { return x; } void addToV(double value) { v[cnt] = value; cnt++; } double getFromV(int pos) { return v[pos]; } MyClass(int value) { printf("Calling the constructor\n"); x = value; cnt = 0; } ~MyClass() { printf("Calling the destructor\n");} }; int main() { int i; MyClass c(7); printf("%d\n", c.getX()); c.setX(19); c.y = 17; printf("%d\n", c.getX()); for (i = 0; i < 10; i++) c.addToV((double) i); for (i = 9; i >= 0; i--) printf("%.3lf\n", c.getFromV(i)); return 0; }
8
Abstract Data Type A collection of axioms + operations Operations = what actions can be performed upon the data type (implemented as functions in C/C++) –for each operation we know: its name its arguments (types and, possibly, names) its return type Axioms specify connections between operations (i.e. the operations are related to one another) Does not contain information regarding the implementation of the operations Similar to a Java interface (except that only the operations are specified in an interface and no axioms)
9
Abstract Data Types - examples Stack –Operations: push, pop, peek, isEmpty –Axioms: a pop() call returns the argument x of the most recent push(x) operation called on the data type for which no corresponding pop() has been called before (or an error, otherwise) Queue –Operations: enqueue, dequeue, peek, isEmpty –Axioms: a dequeue() call returns the argument x of the oldest enqueue(x) call for which no corresponding dequeue() was called (or an error, otherwise)
10
From Abstract Data Types to Data Structures Data structures will be initially handled as abstract data types First we will specify the operations and axioms (many times, the axioms will be given implicitly) Then we will discuss possible implementations (occasionally more than just one) Data structures store elements –Sometimes, the elements may have any type –Other times, the elements must obey some specific properties (e.g. they must be comparable) In order to store any type of elements => we will use class templates (in C++)
11
Class Templates template class class_name {... } –A normal class definition will be prefixed by template –The type T can now be used as a valid type within the class we can have variables, function arguments and function return values of type T The class class_name is parameterized with the type T Most of the times: T=the type of the elements stored by the data structure Similar to Java generics
12
Class Templates - Example #include template class MyGenericContainer { private: T privateObject; public: void setPrivateObject(T value) { privateObject = value; } T getPrivateObject() { return privateObject; } MyGenericContainer(T value) { privateObject = value; } }; struct mystruct { int x; char y[32]; double z; }; int main() { MyGenericContainer c1(7); printf("%d\n", c1.getPrivateObject()); c1.setPrivateObject(9); printf("%d\n", c1.getPrivateObject()); MyGenericContainer c2(7.9); printf("%.3lf\n", c2.getPrivateObject()); c2.setPrivateObject(9.902); printf("%.3lf\n", c2.getPrivateObject()); struct mystruct a; a.x = 3; a.y[4] = 'z'; a.y[5] = 90; a.z = 90.234; MyGenericContainer c3(a); printf("%.3lf\n", (c3.getPrivateObject()).z); a.z++; c3.setPrivateObject(a); printf("%.3lf\n", (c3.getPrivateObject()).z); return 0; }
13
Recursion Very important in the implementation of several data structures (usually the “tree-like” ones) –E.g. in order to perform an operation on a tree node, the same operation must first be called on the node’s children Simple functions: –Factorial –Fibonacci Sorting functions (with good time complexities) –Merge sort –Quick sort
14
The Fibonacci Sequence #include int numCalls = 0; int fibo(int n) { numCalls++; if (n <= 1) return 1; else return fibo(n-1) + fibo(n-2); } int main() { int n; scanf("%d", &n); printf("Fibonacci(%d)=%d\n", n, fibo(n)); printf("Total number of calls=%d\n", numCalls); return 0; } #include #define NMAX 50 int numCalls = 0; int memoFib[NMAX]; int fibo(int n) { numCalls++; if (memoFib[n] >= 0) return memoFib[n]; if (n <= 1) return (memoFib[n] = 1); else return (memoFib[n] = fibo(n-1) + fibo(n-2)); } int main() { int i, n; scanf("%d", &n); for (i = 0; i <= n; i++) memoFib[i] = -1; printf("Fibonacci(%d)=%d\n", n, fibo(n)); printf("Total number of calls=%d\n", numCalls); return 0; } F(0)=F(1)=1 F(n≥2)=F(n-1)+F(n-2) 1, 1, 2, 3, 5, 8, 13,... V1 V2
15
The Fibonacci Sequence (cont.) V1 –Fibonacci(20) = 10946 –numCalls = 21891 Tree of Calls for V1 (n=4) : V2 –Fibonacci(20) = 10946 –numCalls = 39 Tree of Calls for V2 (n=4) :
16
The Fibonacci Sequence (cont.) What if we change the order of the calls fibo(n-1) and fibo(n-2) ? –We use: fibo(n-2) + fibo(n-1) –Does the resut change ? (V1, V2) –Does the total number of calls change ? (V1, V2) A non-recursive function on the right #include int fibo(int n) { int i, fminus1, fminus2, fcurr; fminus1 = 1; fcurr = 1; i = 1; while (i < n) { i++; fminus2 = fminus1; fminus1 = fcurr; fcurr = fminus1 + fminus2; } return fcurr; } int main() { int i, n; scanf("%d", &n); printf("Fibonacci(%d)=%d\n", n, fibo(n)); return 0; } V3
17
Generic Merge Sort Explanations on the blackboard See source code afterwards
18
Generic QuickSort Quicksort(int pstart, int pstop): sort all the elements between pstart and pstop (inclusively) from the array of elements Choose a pivot among the elements between pstart and pstop –The pivot should be smaller than the maximum element within that range Repeatedly swap the elements between pstart and pstop until all the elements pivot
19
Generic QuickSort (cont.) Use two indices, i and j Initially, i=pstart and j=pstop During the swapping phase: all the elements to the left of i are pivot While (i<=j): –If (v[i] <= pivot) i++; –Else if (v[j] > pivot) j--; –Else: Swap v[i] and v[j] i++; j--;
20
Generic QuickSort (cont.) Then, recursively call: –Quicksort(pstart, i-1) i.e. sort all the elements <= pivot –Quicksort(i, pstop) i.e. sort all the elements > pivot See source code
21
Generic QuickSort (cont.) Example: 7 9 2 4 7 3 8 2 1 Choose pivot=3 i=0, j=8, 7 9 2 4 7 3 8 2 1 i=1, j=7, 1 9 2 4 7 3 8 2 7 i=2, j=6, 1 2 2 4 7 3 8 9 7 i=3, j=6, 1 2 2 4 7 3 8 9 7 i=3, j=5, 1 2 2 4 7 3 8 9 7 i=4, j=4, 1 2 2 3 7 4 8 9 7 i=4, j=3, 1 2 2 3 7 4 8 9 7
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.