Download presentation
Presentation is loading. Please wait.
Published byRosalyn Black Modified over 9 years ago
1
PLATE TECTONICS Last chapter in Davis and Reynolds
2
OUTLINE OF LECTURE Plate kinematics 1.In 2-D 2.On a sphere 3.Continental break-up
4
What drives plate motion? Most people agree that plates are intimately related to mantle convection; Slab pull? Ridge push? Mantle drag
5
Model linking subduction to plume magmatism
6
Basic kinematic elements Plate boundaries, triple junctions Absolute plate motion, relative plate motion Euler poles Worked examples
7
Ridges, trenches, transforms Triple junctions, quadruple j’s 3riple junctions are stable; more plates at a point - not stable
8
Absolute plate motions - velocity in an absolute reference frame- say relative to a point outside the Earth. Or an assumed stationary long lived plume…. E.g. Hawaii Otherwise, one uses a relative velocity reference frame. One plate is kept stationary; the velocity of the others relative to the “stationary” plate is monitored. The understanding is that the entire system (including the stationary plate) is actually moving on the globe. In the case of ridges, we use the half spreading rate for velocity calculations.
9
Absolute framework - consider Hawaii a stationary plume (it delivers melts in exactly the same spot over its entire history). We can calculate the velocity vector of the Pacific plate. 75-43 - N20W x cm/yr ; 43-0 Ma N70 W, y cm/yr.
10
There are very few such long lived plume products and it is questionable whether they remain fixed. The common way of tracking plate motions is in a relative framework. Some useful rules: 1. Plate motions are transform parallel; 2. Plate moves away from ridge 3. The sum of relative plate velocities is zero*. Velocity is a vector: magnitude, direction and sense. *- that is because by definition plates are rigid.
11
Examples 1 2.
13
Worked exercise
17
It’s a right lateral transform boundary
18
Finding the relative velocity of Farallon to North America
21
Complicating a bit- what if the transforms are curved? We then have to admit there’s some rotation involved. Any rotation is achieved around a pole. From geometry, this is called the Euler pole. Transforms form arcs that are segments of circles centered in the Euler pole of a plate.
22
Euler poles
24
Example : Australia and New Zeeland
25
Plate tectonics on a sphere Angular velocity, linear velocity Rotations around Euler poles Projections on stereonets
26
Tectonics on a sphere requires that we use angular velocities v/r and r = R sin where R is the radius of the Earth. So what? Check out the fig - predicts motion away from Euler pole. In this case - 2 plates with E at N pole
27
Find distances on a sphere; use lat long and
28
The projections used in 3D plate tectonics are stereonets - equal area - however unlike your usual down view with geo structures, this is a side view. All calculations (angles etc) are similar.
29
What you need to know: The fundamentals of plate tectonics, driving forces; link to mantle convection; Differences between present day and past characteristics of PT; Be able to handle simple 2-3-4-… plate geometry problems in 2D involving only translations. Calculate velocity vectors for such examples; Know what the Euler pole is and angular vs. linear velocity. Be able to find one if you have the other.
30
Continental break-up Plume-driven Plate-driven
31
Continental break-up: plume- caused? Sometimes clearly not. Other times, major oceans appear to form during times of major flood basalts -short lived, vigorous plume heads that may have broken the continents apart
33
Topography of ocean basins
34
Oceanic basins form via rifting old continental margins Tectonic style is similar to continental extension, except the extension is much higher, > 500%
35
Example: the Red Sea
38
Development of passive vs active margins
39
The anatomy of the passive North American margin
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.