Download presentation
Presentation is loading. Please wait.
1
Oct 17, 2008 0 Non-Equilibrium Ionization Orly Gnat (Caltech) with Amiel Sternberg (Tel-Aviv University) Gnat & Sternberg 2007, ApJS, 168, 213 in Post-Shock Cooling Layers in Metal Ion Absorbers and Gnat & Sternberg 2008, ApJ submitted
2
Oct 17, 2008 1 Non–Equilibrium Radiative Cooling Cooling is faster than recombination (t c <<t r ) Gas stays “over-ionized” Modified ionization affects cooling rates: for over-ionized gas cooling is suppressed Cooling rate depends on metallicity More metals ⇒ faster cooling ⇒ further out of equilibrium ApJS 168, 213
3
Oct 17, 2008 2 Numerical Computation Cooling from CIE at T>5x10 6 K. Follow time-dependent ionization dx i /dt=… ~ The energy equation (Cooling) dT/dt=… Step 1: No Photoionization dx i /dT independent of density …But depends on metallicity HHe CNO NeMg SiSFe ApJS 168, 213
4
Oct 17, 2008 3 Results: Ionization - Hydrogen 10 4 10 5 10 4 10 5 10 6 Temperature (K) 10 6 10 0 10 -1 10 -2 Recombination Lag time EquilibriumNon-Equilibrium ApJS 168, 213
5
Oct 17, 2008 4 Results: Ionization - Carbon 10 4 10 5 10 4 10 5 10 6 Temperature (K) 10 6 10 0 10 -1 10 -2 EquilibriumNon-Equilibrium ApJS 168, 213
6
Oct 17, 2008 5 Results: CIE Cooling Bremsstrahlung Metal Line Cooling He Cooling 10 -21 10 -22 10 -23 10 -24 H Lya eq (erg cm 3 s -1 ) 10 4 10 5 10 6 10 7 10 8 Temperature (K) Z = 2 Z = 1 Z = 10 -1 Z = 10 -2 Z = 10 -3 cooling efficiency
7
Oct 17, 2008 6 Results: Non-Equilibrium Cooling Equilibrium Non-Equilibrium
8
Oct 17, 2008 7 Local Metal-Ion Absorbers Turbulent Mixing Layers Conductive Interfaces Cooling Flows Shock Ionization log ( N V / O VI ) log ( C IV / O VI ) Fox et al. 2005 ApJ 630, 332 ApJS 168, 213
9
Oct 17, 2008 8 High Velocity Metal Absorbers Fox et al. 2005 ApJ, 630, 332
10
Oct 17, 2008 9 Time-Dependent Cooling - Summary Equilibrium and Non-Equilibrium Ionization States & Cooling Efficiencies of H, He, C, N, O, Ne, Mg, Si, S, & Fe, For 10 4 < T < 10 8 K and 10 -3 < Z < 2 solar. Isochoric / Isobaric – conditions & results. Impact of Self Radiation. http://wise-obs.tau.ac.il/~orlyg/cooling/ ApJS 168, 213
11
Oct 17, 2008 10 Step 2: Steady Flows of Cooling Gas Integrated metal-ion cooling columns in steady flows of cooling gas
12
Oct 17, 2008 11 Post Shock Cooling Layers gas Pre-shockPost-shock T(x) shock Radiative transfer ⇒ Photoionization, heating Ionization: Auger Precursor Dynamics
13
Oct 17, 2008 12 Post-Shock Cooling Layers Two extremes: –No B field - explicitly follow Rankine-Hugoniot continuity eqns: Mass Momentum Energy Nearly isobaric flow: P ∞ = 4/3 P 0 –Strong B field - isochoric evolution.
14
Oct 17, 2008 13 Post-Shock Cooling: Shock Structure T s =5x10 6 K Z=0.1 n H =0.1cm -3 (Photoionized) Radiative Precursor High-T Radiative Zone Non-eq Cooling Zone The Photo- absorption Zone
15
Oct 17, 2008 14 Post-Shock Cooling: Shock Structure Shock temperature Magnetic field Gas Metallicity
16
Oct 17, 2008 15 Post-Shock Cooling: Emitted Radiation
17
Oct 17, 2008 16 Post-Shock Cooling: Column Densities
18
Oct 17, 2008 17 Gnat & Sternberg 2008 Shock Structure, Profiles, Scaling Relations Ion Fractions Cooling and Heating Integrated Column Densities Columns in Precursors Thank you !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.