Download presentation
Presentation is loading. Please wait.
1
Features for handwriting recognition
2
| 2 The challenge “Rappt JD 10 Feb no 175, om machtiging om af”
3
| 3 Short processing pipeline “machtiging” Feature extraction Classification 82,34,66,… 0.12 “machtiging” Learning
4
| 4 Processing pipeline Feature extraction Classification Preprocessing
5
| 5 Input image types ›Color: ›Grayscale: ›Binary:
6
Preprocessing ›Goal: enhance the foreground while reducing other visual symptoms (stains, noise, pictures,...) ›Methods: Contrast stretching Highpass filtering Despeckling Change color representation (RGB, HSV, grayscale, black/white, …) Remove selected connected components ( ) … | 6
7
| 7 Connected components
8
| 8 Processing pipeline Segmentation Feature extraction Classification Preprocessing
9
| 9 Object of classification ›Sentences ›Words ›Characters (use grammar) (use dictionary) (use alphabet)
10
| 10 Object representations ›Image ›Unordered vectors (in a coco) ›Contour vectors ›On-line vectors ›Skeleton image ›Skeleton vectors (x, y) i (x, y) k I(x, y)
11
| 11 A full processing pipeline Segmentation Normalization Feature extraction Classification Preprocessing
12
| 12 Invariance ›Luminance / contrast ›Position ›Size ›Rotation ›Shear ›Writer style ›Ink thickness ›…›…
13
| 13 Invariance by normalization ›Luminance / contrast ›Position ›Size ›Rotation ›Shear ›Writer style ›Ink thickness ›… Center on center of gravity Contrast stretching Scale to standard size
14
| 14 Invariance by trying many deformations ›Luminance / contrast ›Position ›Size ›Rotation ›Shear ›Writer style ›Ink thickness ›… Try different scale factors Try different rotations … and use the best recognition result Try different deformations
15
| 15 Invariance by using invariant features ›Luminance / contrast ›Position ›Size ›Rotation ›Shear ›Writer style ›Ink thickness ›… Zernike invariant moments
16
| 16 A full processing pipeline Segmentation Normalization Feature extraction Classification Preprocessing 82,34,66,…
17
| 17 Feature ROI types ›Whole object ›Zones ›Windowing
18
| 18 Whole object (“wholistic”)
19
| 19 Zones
20
| 20 Windowing
21
| 21 Feature types ›Image itself ›Statistical ›Structural ›Abstract ›Image (off-line) features (1—20) ›Contour / on-line features (21 – 28)
22
| 22 Feature 1 – 3 ›Connected component images ›Scaled image ›Distance transform (on whiteboard)
23
| 23 Feature 4: density histogram
24
| 24 Feature 5: radon transform
25
| 25 Feature 6: run count pattern 3 6 23
26
| 26 Feature 7: run length pattern avg stdev avg stdev
27
| 27 Feature 8: Autocorrelation
28
| 28 Feature 9: Polar zones
29
| 29 Feature 10: radial zones (tip!)
30
| 30 Feature 11: zone histograms
31
Feature 12: Hinge | 31 (By Marius Bulacu)
32
Feature 13: Fraglets | 32
33
| 33 Regelmatigheden Singulariteiten Feature 14: J.C. Simon (1/2)
34
| 34 "million" ==> convex:concave:3(north:concave) :(north:LOOP):concave:(north:LOOP) :concave:north :concave:HOLE :2(convex:concave) (J.-C. Simon, 1989) Feature 14: J.C. Simon (2/2)
35
| 35 Feature 15: Structure of background (1/3)
36
| 36 Feature 15: Structure of background (2/3)
37
| 37 Feature 15: Structure of background (3/3)
38
| 38 Feature 16: Structure of foreground + background
39
| 39 Feature 17: Fourier transform (1/2) From: http://ccp.uchicago.edu/~dcbradle/pages/5.23.06.html
40
| 40 Feature 17: Fourier transform (2/2) Fig. 1 and 3 from: http://www.csse.uwa.edu.au/~wongt/matlab.html Fig. 2 from: http://www.chemicool.com/definition/fourier_transform.html
41
| 41 Feature 18: Wavelet transform From: http://www.regonaudio.com/Audio%20Measurement%20via%20Wavelets.html
42
| 42 Feature 19: Hu invariant moments area of the object center of mass Slide from: http://www.cedar.buffalo.edu/~govind/CSE717/lectures/CSE717_3.ppt ›Invariant for scale, position and rotation ›Derived from moments ›Moments describe the image distribution with respect to its axes ›Works on (x, y) vectors
43
| 43 Feature 20: Zernike moments From: Trier, O. D., Jain, A. K., and Taxt, T. (1996). Feature extraction methods for character recognition - a survey. Pattern Recognition,29:641–662.
44
| 44 Feature 21 – 28: Contour features ›(cos, sin) of running angle ›(cos, sin) of running angular difference ›Angular difference ›Fourier transform ›Ink density (horizontal or vertical) ›Radon transform: (ink density, computed radially from the c.o.g.) ›Angular histogram ›Curvature scale space ( )
45
| 45 Feature 28: Curvature scale space From: http://www.christine.oppe.info/blog/category/formen-und-farben/formenvergleich/ pos iteration
46
End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.