Presentation is loading. Please wait.

Presentation is loading. Please wait.

Сессия ЯФ ОФН РАН, 30.11.07 г., ИТЭФ Статус экспериментальных работ по измерению магнитного момента нейтрино Старостин А.С. ИТЕФ.

Similar presentations


Presentation on theme: "Сессия ЯФ ОФН РАН, 30.11.07 г., ИТЭФ Статус экспериментальных работ по измерению магнитного момента нейтрино Старостин А.С. ИТЕФ."— Presentation transcript:

1 Сессия ЯФ ОФН РАН, 30.11.07 г., ИТЭФ Статус экспериментальных работ по измерению магнитного момента нейтрино Старостин А.С. ИТЕФ

2 Science motivation of the searching for μ minimally-extended Standard Model: μ ~ 10 –19  B  (m / 1eV) (  B = e  h /2m e Bohr magneton) number of extensions beyond the MSM independently of neutrino mass: μ ~ 10 –10 - 10 –12  B limits for the NMM from astrophysics   (0.4 – 0.05)  10 –10  B (model dependent !!!) it is necessary to make laboratory  measurements sensitive enough to reach ~ 10 –11  B region and test hypotheses beyond the MSM.

3 Experimental measurements μ The effects of the NMM can be searched for in the recoil electron spectrum from - e scattering. For a non-zero NMM the differential over the kinetic energy T of the recoil electron cross section d  /dT is given by At small recoil energy in d  /dT the weak part practically constant, while the EL one grows as 1/T towards low energies. As a neutrino source in the experiments it’s used solar neutrino and reactor antineutrino. In future it’s planes to use artificial neutrino sources. (d  /dT) weak + (d  /dT) EL

4

5 Солнечные нейтрино p + p  d + e + + e (E  0,420 MeV) p + e - + p  d + e (E =1,442 MeV) 3 He +p  4 He+ e + + e (  18,77 MeV) 7 Be + e -  7 Li + e (E =0,862 MeV) 8 B  7 Be* + e + + e (E  14,6 MeV) Ф ~ 6  10 10 см -2 с -1

6 Limit for the NMM from solar data The spectrum distortion analysis of SK electron recoil spectrum can allow to set limit of  : [hep-ex/0402015]   3.6  10 -10  B at 90% CL – SK data alone   1.1  10 -10  B at 90% CL – SK + constrains from the other solar neutrino and KamLAND results (Δm 2 = 6.6  10 -5 eV 2, tan 2 θ = 0.48). BOREXINO claim (2010)   3.0  10 –11  B

7 The average figures for LWR: Fuel composition→ 235 U, 239 Pu, 238 U, 241 Pu Average energy per fission E f = 205.3 Mev. Number of the fiss. / sec N f = W/ E f = 9.14×10 19 f/s n per fiss. = 7.2 → 6.0 ( fiss. fragments) + 1.2 ( 238 U n,γ 239 U → 239 Np → 239 Pu) F = n W/E = 6.4 × 10 20 /3GWth/sec At R = 14 m f  3 × 10 13 /cm 2  sec Reactor as a source of antineutrino

8 MUNU experiment France, Switzerland, Italy NPP (2800MWth) Bugey, France CF4 TPC total mass 11.4 kg Measurements e - scattering angle with respect to R core direction MUNU data (66.6 d ON/16.7 d OFF) [PLB 564, 2003; hep-ex/0502037] Limits depends on energy range taken :  T > 900 keV [PLB 564, 2003]  < 1.0  10 -10  B (90% CL)  T > 700 keV [ hep-ex/0502037]  < 9.0  10 -11  B (90% CL)

9 TEXONO experiment Collaboration: Taiwan, China, Turkey Kuo-Sheng PP in Taiwan. Reactor thermal power - 3 GW. Distance from center of reactor core 28 -flux equal ~ 7×10 12 / cm 2 / s HPGe mass 1 kg enclosed by active NaI/CsI anti-Compton, further by passive shielding & cosmic veto

10 TEXONO result TEXONO data (197/52 days ON/OFF - 2003) [PRL 90, 2003] (571/128 days ON/OFF - 2006) [hep-ex, 0605006] BG level at 10-20 keV : ~ 1 day -1 keV -1 kg -1 (cpd) analysis threshold 12 keV No excess of counts ON/OFF comparison Limit:  < 7.4  10 -11  B (90% CL)

11 Experiment GEMMA (Germanium Experiment for measurement of Magnetic Moment of Antineutrino) ITEP – LNP JINR Dubna ITEP – LNP JINR Dubna [Phys. of At.Nucl.,70,№11(2007)1873] Spectrometer includes a HPGe detector of 1.5 kg installed within NaI active shielding. Spectrometer includes a HPGe detector of 1.5 kg installed within NaI active shielding. HPGe + NaI are surrounded with multi- layer passive shielding  electrolytic copper, borated polyethylene and lead. HPGe + NaI are surrounded with multi- layer passive shielding  electrolytic copper, borated polyethylene and lead. Circuit noises were discriminated by means method of frequency analysis of signals.

12 Reactor #2 of the “Kalininskaya” Nuclear Power Plant (400 km North from Moscow) Technological room just under reactor 14.0 m 14.0 m only! Power: 3 GW 300 ON: 300 days/y 65 OFF: 65 days/y Total mass above (reactor, building, shielding, etc.): ~70 m ~70 m of W.E.

13

14 High freq. noise: E1 > E2 Real signal: E1 = E2 Low freq. noise: E1 < E2

15 E (ADC-1) E (ADC-2)

16 После Фурье-фильтрации

17 The sensitivity of the current experiment N N : number of signal events expected B B : background level in the ROI m m : target (=detector) mass t t : measurement time ~ N ~  ( ~ Power / r 2 ) ~ ~ log( Tmax / Tmin ) GEMMA I 2005 – 2008 ~  ~ 2.7 ×10 13 / cm 2 / s t ~ 3 years B ~ 2.5 keV -1 kg -1 day -1 m ~ 1.5 kg T -th ~ 3.0 keV   4  10 -11  B

18 Preliminary result for 2 years (anti)neutrino magnetic moment: µ ≤ 5.8∙10 –11 µ B (90% CL) Available as (hep-ex/0705.4576, Yad. Phys.(2007) 70, p.1925) Status : “on” 446.9 d / “off” 123.2 d – collected “on” 216 d / “off” 77.2 d - processed

19 GEMMA II 2009 – 2011 Distance: 14m → 10m  ~ 5.4×10 13 / cm 2 / s t ~ 3 years B ~ 0.2 keV -1 kg -1 day -1 m ~ 6.5 kg (two detectors) T -th ~ 1.2 keV GEMMA III expected sensitivity in future experiments   1  10 –11  B

20 Summary For last years general results were obtained in reactor experiments Now best limit on NMM µ ≤ 5.8∙10 –11 µ B (90% CL) The GEMMA II planes to reach sensitivity to 2011y. µ ~ (1.0 ÷1.5) ∙10 –11 µ B


Download ppt "Сессия ЯФ ОФН РАН, 30.11.07 г., ИТЭФ Статус экспериментальных работ по измерению магнитного момента нейтрино Старостин А.С. ИТЕФ."

Similar presentations


Ads by Google