Download presentation
1
Calculating the Variance –Covariance matrix
MGT 4850 Spring 2009 University of Lethbridge
2
Efficient Portfolios Efficient frontier
Black (1972) – convex combination of any two efficient portfolios, e.g. if we have two efficient portfolios we can find the whole efficient frontier. Minimize portfolio variance, subject to defined return and sum of weights equal 1.
3
Transpose and Multiplication
Weights - column vector Γ (row vector ΓT) Returns - column vector E (row vector ET) Portfolio return ET Γ 25 stocks portfolio variance ΓTS Γ ΓT(1x25)*S(25x25)* Γ(25x1) To calculate portfolio variance we need the variance/covariance matrix S.
4
variance/covariance matrix
Using Excess Returns Return data for variance-covariance 295 Excess return matrix A and its transpose AT for the calculation of S matrix AT A/(M-1) → S (p. 292).
5
Excess Returns (fixing the row cell A$23)
6
AT A/(M-1) → S (p. 292).
7
Population vs. Sample
8
VBA (optional) Function VarCovar(rng As Range) As Variant
Dim i As Integer Dim j As Integer Dim numCols As Integer numCols = rng.Columns.Count Dim matrix() As Double ReDim matrix(numCols - 1, numCols - 1) For i = 1 To numCols For j = 1 To numCols matrix(i - 1, j - 1) = Application.WorksheetFunction.Covar(rng.Columns(i), rng.Columns(j)) Next j Next i VarCovar = matrix End Function
9
Array function 298 (Shift+CTRL+Enter)
10
variance/covariance matrix 299
Offset Function → returns a reference to a range that is a given number of rows and columns for a given reference
11
Minvarprt=1.S-1/1. S-1.1T
12
Eff P=S-1[E(r)-c]/Sum{S-1[E(r)-c]}
13
Single Index Model
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.