Download presentation
1
Measurement of the 241Am(n,2n) reaction cross section using the activation method
G. Perdikakis1,2, C. T. Papadopoulos1, R. Vlastou1, A. Lagoyannis2, A. Spyrou2, M. Kokkoris1, S. Galanopoulos1, N. Patronis1, D. Karamanis3, Ch. Zarkadas2, G. Kalyva2, and S. Kossionides2 n_TOF Collaboration 1 Department of Physics, National Technical University of Athens, Athens, Greece 2Institute of Nuclear Physics, NCSR “Demokritos”, Athens, Greece 3 Department of Physics, University of Ioannina, Ioannina, Greece G. Perdikakis
2
Outline of the talk Motivation Experimental Analysis
Results for 241Am(n,2n) Theoretical Calculations (in progress) Other reactions studied – Future Plans G. Perdikakis
3
Not enough experimental data !
Transmutation of MAs - Important Reaction Channels Neutron emission channels σ(n,xn) Fission Channels σ(n,xnf) Not enough experimental data ! Theoretical Predictions Experimental Investigation of Theoretical Model Parametres required G. Perdikakis
4
241Am: One of the most abundant isotopes in nuclear waste and one of the most radiotoxic elements
Existing Data G. Perdikakis
5
Energy Range of Interest:
241Am(n,2n)240Am Energy Range of Interest: 8-12 MeV Να σημειώσω το κατώφλιο G. Perdikakis
6
Monoenergetic Neutron Beams @ INP “Demokritos”
5.5MV Tandem VdG p+ or d+ beam Shielding wall ~ 105 n/cm2s 7Li(p,n)7Be 150 – 650 keV ~ 106 n/cm2s 2H(d,n)3He 5 – 12 MeV ~ 105 n/cm2s 3H(d,n)4He 16 – 20 MeV G. Perdikakis
7
The Activation Target 3mm Pb shield 27 Al foil n Beam
37 GBq 241 Am target Stainless Steel G. Perdikakis
8
Irradiation Setup 2 m Pb HPGe D filled Gas Cell d+ ΔΕn: < 100 keV
9cm ΔΕn: < 100 keV n Beam 241Am Target 2 m Parafin BF3 Neutron Counter G. Perdikakis
9
Outline of the Reaction 241Am(n,2n)240Am
Fission E,J,π 3n+239Am n T1/2=50.8h 2n+240Am n+241Am n+241Am γ 242Am 240Pu Most Intense γ-rays: 5 days of irradiation for each beam energy ! 987.8 keV (I=73%) 888.8 keV (I=25%) G. Perdikakis
10
HPGe spectrum @ 10.6 MeV 987.8 keV 240Am 154Eu 1014.7 keV 241Am
984.5 keV 238Np +154Eu 955.7 keV 241Am 154Eu @ 10.6 MeV
11
Reaction Cross Section
G. Perdikakis
12
Results G. Perdikakis
13
G. Perdikakis et al. , Phys. Rev. C - In press
Results G. Perdikakis
14
Outline of the Reaction 241Am(n,2n)240Am
Fission E,J,π 3n+239Am n T1/2=50.8h 2n+240Am n+241Am n+241Am γ 242Am 240Pu Hauser Feshbach: Preequilibrium contribution : Exciton Model STAPRE/F G. Perdikakis
15
The double-humped fission barrier
ρΝ ρΑ ρΒ Saddle A states Saddle B states Normal states Fission n n+X ħωΑ ħωΒ UA UB βΝ βΑ βΒ scission Deformation, β G. Perdikakis `
16
Main parametres of the calculation
Level Density, ρ(U,J), at the saddles and at normal deformation Transmission Coefficients for neutrons,Τn Coupled Channels OMP for actinides (Ignatyuk et. al. Sov. J. Nucl. Phys. 51, (5), 1990) Fission Barrier Parametre UA,UB,ħωΑ,ħωΒ Deduced from experimental data (V. M. Maslov. RIPL-1 Handbook. TEXDOC-000, IAEA, Vienna, 1998, Ch. 5.) G. Perdikakis
17
Generalized Superfluid Model of the nucleus
Shell, Superfluid pairing and Collective effects, important for the calculation a=ã[1+δw·f(U-Econd)] Generalized Superfluid Model of the nucleus Ignatyuk et al, Sov. J. Nucl. Phys 29, (4), 1979 G. Perdikakis
18
241Am(n,F) Results Preliminary !!! 241Am(n,2n) G. Perdikakis
19
Conclusions Other measurements
Measurement of the 241Am(n,2n) reaction @ En = 8.8 – 11.4 MeV Theoretical calculations in progress 241Am(n,2n) 241Am(n,F) Other measurements 232Th(n,2n) D. Karamanis et al. NIM A 505, 381, (2003) n-induced reactions on Ge, Hf and Ir isotopes In progress 237Np(n,2n) To be done G. Perdikakis
20
THE END
21
Results Preliminary !!! 241Am(n,2n) G. Perdikakis
22
Conclusions and Future Perspectives
Systematic Experimental Investigation of 241Am(n,2n) Reaction Cross Section, for the first time Consistent Theoretical Description of 241Am(n,2n) Reaction, in Reasonable Agreement with Experimental Data. Experimental Investigation to be Continued at Lower Energies Improvement of Theoretical Description over the whole energy range
23
241Am(n,2n)240Am
24
Results 241Am(n,f) 241Am(n,2n)240Am
25
Energy Production and Nuclear Waste Transmutation in ADS Systems
Higher Fission/Capture ratio More effective Transmutation S. Taczanowski et. al. Applied Energy 75, 97, (2003) Sub-critical Systems Transmutation of Nuclear Waste Neutrons produced by Spallation Reaction in Accelerator Main Characteristics Neutron Flux in Reactor Core affected by n-induced reactions Minor Actinides (Am, Cm, Np) Not a good reactor fuel Not enough delayed neutrons
26
Off Line HPGe 241Am Target Pb shielding
31
Irradiation Setup D filled Gas Cell d+ n Beam 241Am Target
Parafin 100000 200000 300000 400000 Neutron Flux (counts) Irradiation Time (sec) E n = 10.6 MeV Neutron Flux vs Time 5 days of Irradiation n Beam 241Am Target BF3 Neutron Counter
32
Mapping the Neutron beam fluctuations
100000 200000 300000 400000 Neutron Flux (counts) Irradiation Time (sec) E n = 10.6 MeV Neutron Flux vs Time 5 days of Irradiation
33
HPGe Pb
35
Measurement of the 241Am(n,2n) cross section by the activation method
Experimental Difficulties Highly radioactive target, Relatively long half life of 240Am (50.8 h)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.