Download presentation
Presentation is loading. Please wait.
1
NEMO-3 Detector Preliminary results Performance of the detector analysis for 100 Mo, 82 Se and 150 Nd Background study for research ( 208 Tl and Radon) Future of NEMO NEMO Experiment Neutrino Ettore Majorana Observatory Journées Neutrinos 27-28 novembre 2003 LPNHE-Paris Xavier Sarazin for NEMO Collaboration
2
NEMO Experiment Neutrino Ettore Majorana Observatory Search for neutrinoless double beta decay Study several isotopes Mo 100, Se 82, Te 130, Cd 116, Zr 96, Ca 48, Nd 150 Tag and measure all the components of background e -, e +, , , neutrons “zero background” experiment
3
Double beta (0 ) decay : Physics beyond the standard model (0 ) : 2n 2p+2e - L = 2 Process Majorana Neutrino and effective mass Right-handed current in weak interaction Majoron emission SUSY particle exchange WW WW n n p p ee ee M eR eL (Q ~ MeV) ( ) h h
4
1 sector of NEMO3 Sources: 20 m 2, total mass ~ 10 kg, thickness ~ 60 mm Tracking detector (6180 Geiger cells in He+alcohol): Vertex t = 5 mm, z = 1 cm Calorimeter (1940 plastic scintillators + PMTs low radioactivity) E /E = 3% at 3 MeV and neutron shield: Iron shield (18 cm) + water shield + wood shield + parafin magnetic field B=25 G all materials low radioactivity (total activity in 208 Tl and 214 Bi 300 Bq) Located in Modane Underground Laboratory NEMO-3 Detector
5
isotope foils scintillators PMTs Calibration tube Cathodic rings Wire chamber
6
AUGUST 2001 June 2002 : tests runs February 2003 : beginning of data taking
7
coil Iron shield Water tank wood
8
Sources preparation
9
Bkg Sources thickness mg/cm 2 ) Q = 3034 keV Q = 2995 keV 82 Se (0.93 kg) 100 Mo (6.9 kg) Sources in NEMO-3 detector
10
Expected background and sensitivity External and neutron background negligeable 7 kg of 100 Mo Source contamination : A ( 214 Bi) < 0.3 mBq/kg A ( 208 Tl) < 0.02 mBq/kg Internal background : 214 Bi < 0.04 evts/y/kg 208 Tl < 0.04 evts/y/kg 0.11 evts/y/kg Total Bkg < 1.4 event/year T 1/2 (0 ) > 8.10 24 y m < 0.1 – 0.3 eV 5 years of data Energy window: [2.8-3.2] MeV Efficiciency = 14% 1 kg of 82 Se Source contamination : A ( 214 Bi) = 1.2 0.5 mBq/kg (measured) A ( 208 Tl) = 0.4 0.1 mBq/kg Internal background : 0.01 evts/y/kg Hot spots: Pollution rejected Bkg ~ 0 event/year T 1/2 (0 ) > 1.5.10 24 y m < 0.6 – 1.2 eV
11
NEMO-3 Preliminary Results Performance of the detector analysis for 100 Mo, 82 Se, 150 Nd Background analysis for search
12
Trigger: 1 PM > 150 keV 3 Geiger hits (2 neighbour layers + 1) Counting rate = 7.5 Hz Proportion of types of events in raw data: Type of eventRate (mHz) 1 e , 0 600 1 e , N 150 e e pairs110 Crossing e 80 event 5.4 mHz Data Tacking October 1 st 2003 161 days of data tacking ~ 75 % efficiency Days of data collecting / month Efficiency of data collecting / month
13
Tracking Detector Performances 0.5 % Geiger cells OFF 97.5 % Geiger cells with 2 cathodic signals Longitudinal propagation of Geiger plasma: Efficiency > 93% for 90% of Geiger cells RAW DATA PROCESSED DATA
14
Transversal and Longitudinal Resolution on the Vertex 1 e channel at 1 Mev: (1 MeV) = 0.2 cm // (1 MeV) = 0.7 cm (Z=0) 2e- channel (1 MeV+ 0.5 MeV) (1 MeV) = 0.6 cm // (1 MeV) = 1.8 cm (Z=0) 207 Bi sources at 3 well known positions in each sector (emission of two e- conversion at 1 and 0.5 MeV)
15
Performances of the calorimeter Tube in each sector where calibration sources are introduced (3 positions) 3 electron energies : 486 keV and 976 keV with 207 Bi, and 2.28 MeV with 90 Sr 90 Sr End point 2,28 MeV At 1 MeV (Q 3 MeV for 100 Mo and 82 Se): 207 Bi 482 keV 976 keV FWHM = 135 keV FWHM E /E Ext. Wall (PMTs 5") 14 % 5.8 % / E( MeV ) Int. Wall (PMTs 3") 17 % 7.1 % / E( MeV )
16
2 event EVENT OBSERVED BY NEMO-3… E 1 +E 2 = 2088 keV ( t)mes –( t)theo = 0.22 ns ( vertex) = 2.1 mm ( vertex) // = 5.7 mm
17
100 Mo 2 2 preliminary results (14 Feb. 2003 – 30 Sep. 2003) 160 days 75535 events Background substracted 2 2 Monte Carlo NEMO 3 S/B (> 1 MeV) 100 T 1/2 = 7.8 0.09 (stat) 0.09 (syst) 10 18 y S/B = 40
18
100 Mo 2 2 Single Energy Distribution Calculations for 100 Mo: (Simkovic, J. Phys. G, 27, 2233, 2001) HSD, higher levels contribute to the decay SSD, 1+ level dominates in the decay (Abad et al., 1984, Ann. Fis. A 80, 9 ) 100 Mo 00 100 Tc 00 11 Effect in one electron spectrum
19
100 Mo 2 2 angular distribution Background substracted NEMO 3 2 2 Monte Carlo
20
82 Se 2 2 preliminary results (14 Feb. 2003 – 30 Sep. 2003) Contaminated with low energy -emitters Cuts: E > 300 keV Cos ( ) < 0.7 3834 hours 1100 events S/B = 4.2 Background substracted 2 2 Monte Carlo T 1/2 = 9.52 0.25 (stat) 0.9 (syst) 10 19 y
21
150 Nd 2 2 preliminary results (June 2002 – 30 Sep. 2003) 3834 hours 400 events S/B = 4.2 Background substracted 2 2 Monte Carlo T 1/2 = 7.5 0.3 (stat) 0.7 (syst) 10 18 y
22
Two natural isotopes which have the greatest Q values > 3 MeV: 214 Bi : Q 3.27 MeV 208 Tl : Q MeV Design NEMO-3 detector for 10 kg: 214 Bi in source foils < 0.3 mBq/kg 208 Tl in source foils < 0.02 mBq/kg Total activity of the detector (200 tons) 300 Bq Origin of Background at high energy In the Modane Underground Laboratory: Fast neutron flux ( 1 MeV): 3.5 ± 1.5 10 -6 n.cm -2 s -1 Thermal neutron flux (~0.025 eV): 1.6 ± 0.1 10 -6 n.cm -2 s -1
23
Electron Gamma : 50% efficiency at 1 MeV Energy Threshold = 30 keV Time of Flight : Time Resolution 250 ps at 1 MeV e /e - separation with a magnetic field of 25 G 3% confusion at 1 MeV Delayed tracks (<700 s) to tag delayed from Bi 207 214 Bi 214 Po (164 s) 210 Pb How NEMO-3 tags the background
24
Measurement of the sources of background 214 Bi channel e ( with T 1/2 ( ) 164 s ( 214 Bi - 214 Po - 210 Pb ) 208 Tl channels e ’s with E = 2.6 MeV 212 Bi 212 Po e ( ) T 1/2 ( ) 300 ns neutrons, external gammas e crossing, e e , e e > 4 MeV
25
Electron + N ’s 208 Tl (E = 2.6 MeV) Electron crossing > 4 MeV Neutron capture BACKGROUND EVENTS OBSERVED BY NEMO-3… Electron + delay track (164 s) 214 Bi 214 Po 210 Pb Electron – positron pair B rejection
26
Search for 208 Tl background in the foils 3800 h of data analysed 14 Feb. 2003 – 30 Sep. 2003 Tl cuts: E 1 > 400 keV E 2 > 1900 keV E > 200 keV MC: (Mo) = 0.16% 3.4 Rn events (3800 h.) for 20 sectors look for e , e2 , e3 events coming from the foil sourcesN eventsA ( Bq/kg) HPGe measure 100 Mo20 110 25 100 Mo metal.17 140 40 < 100 100 Mo comp.350< 110 Cu0 82 Se10 490 150400 100 150 Nd10 11800 370010000 2000 nat Te5~250< 90 VERY PRELIMINARY Good agreement with the HPGe measurements
27
Neutron and High-Energy gamma Background Only 1 -like event > 4 MeV detected after 160 days of data tacking ! (14 Feb. 2003 – 30 Sep. 2003) Run 2058 event 345966 26 March 2003 130 Te source (sector 19) E 1 +E 2 = 4448 keV look for e e events > 4 MeV coming from the foil
28
Two different measurements of radon in the NEMO-3 gas: Radon detector: sensitivity: 1 count/day for 1 mBq/m 3 Radon measurement 20 mBq/m 3 (1e + 1 ) channel in the NEMO-3 data: Able to measure Radon every half day Radon measurement 30 mBq/m 3 ~ a few 0 -like events due to radon, expected in 1 year !!! TOO HIGH !!! A free Radon Tent surrounding the NEMO-3 detector in construction: February 2004: 200 kg Charcoal Factor ~ 8 for Radon purification Spring 2004: Full Radon purification system Factor ~ 100 222 Rn 218 Po 214 Pb 214 Bi 214 Po 210 Pb Radon in NEMO-3 s
29
E1+E2= 2880 keV Run 2220, event 136.604, May 11th 2003 a -like event due to Radon from the gas track (delay = 70 s) 214 Po 210 Pb 214 Bi 214 Po decay IN THE GAS
30
Fall 2003 : Tent surrounding the detector A( 222 Rn) ~ Bq/m 3 Today : A( 222 Rn) in the LSM ~10 Bq/m 3 Spring 2004 : Radon-free Gas Facory A( 222 Rn) ~ 0.2 Bq/m 3 150 m 3 /h Free-Radon Purification System
31
Sensitivity of NEMO3 to measure sources of background Design NEMO3 for 10 kg: 208 Tl in source foils < 0.02 mBq/kg 214 Bi in source foils < 0.3 mBq/kg neutron flux < 10 -8 n cm -2 s -1 Sensitivity NEMO3 after 2 years of data : 208 Tl in source foils < 2 Bq/kg channel e ’s (E = 2.6 MeV) 212 Bi 212 Po e (300 ns) 214 Bi in source foils < 2 Bq/kg measured by channel e ( ( 214 Bi 214 Po 210 Pb; T 1/2 = 164 s ) neutrons < 10 -9 n cm -2 s -1 measured by e - crossing > 4 MeV Sensitivity to 100 kg of isotopes
32
Future for a NEMO Detector Tracking-Calorimeter Technique
33
NEMO-3 QD IH QD IH Expected values of m from neutrinos oscillations parameters Pascoli and Petcov, hep-ph/0310003 (best fit atm + sol ) Quasi-Degenerate (QD): m > 0.6 eV Inverted Hierarchie (IH): 0.015 eV < m < 0.6 eV Normal Hierarchie (NH): m < 5. 10-3 eV ~ ~ ~ ~ Next Generation of NEMO detector « detect » 1 gold event/year with m ~ 20 meV
34
Number of event detected / year: ln2. N. . M A. T 1/2 (y) 0 N / year N : Avogadro A : atomic mass M : mass (g) of enrich. Isotope : detection efficiency Future of NEMO Real measurement with 1 GOLD EVENT / YEAR M = k 100 kg of 100 Mo or 82 Se = 0.5 Background = 0.1 event / year 1 Gold event detected / year 0 T 1/2 2 k 10 26 years m = 20 – 60 meV Goal of a next NEMO detector:
35
3-4-5 December 2003: 1 st meeting for Future of NEMO Start working groups to prepare a design proposal for a future NEMO detector Advantage of a Calo-Tracking approach: Can measure several isotopes Tag and measure all backgounds : zero background experiment May detect « Gold events » Start with realistic 100 kg isotope module… could be extended to 1 ton with several modules) Working groups: R&D Calorimeter R&D Tracking Sources Enrichment ( 100 Mo, 82 Se, 150 Nd…) Purification sources Simulation Main challenges: Energy resolution Efficiency Sources (enrichment, purification) Future of NEMO
36
ENERGY RESOLUTION IS ONE OF THE MAIN CHALLENGE Goal: < 0.1 event/year in the energy window FWHM ( ray at 3 MeV) 350 keV one event/year expected in the energy window NEMO-3 (7 kg): 2 ( ray) = 2 (Calorimeter) + 2 (dE/dX in foil) + 2 (dE/dX in tracking) CALORIMETER: separate e / measurement to improve e energy resolution (NEMO-3 ~ 15% at 1 MeV) electron: Silicon (Li) detector (~ 5 mm, noise ~ 20-30 keV at normal T o ) Very good thin scintillator (~ 2 cm) gamma: thicker scintillators (100% efficiency instead of 50%) SOURCES: Decrease the energy losses in the foil (NEMO-3 ~ 50-80 g/cm 2, 60 m: ~150 keV) Active sources (ex: 2 foils 20 m + counters) internal Background rejection TRACKING: Similar Geiger drift wire chamber TPC in He (Japan group) ee 208 Tl internal bkg
37
ILIAS European funding for research JRA1 : low bkg. techn. for Deep Underground Laboratories Links LSM and Boulby Develop. Ultra Low Bkg. Facility: Big effort on Germanium Radon factory NEMO people involved in ILIAS (5 years) JRA2 : R&D for next detectors R&D for calorimeter (silicon, scintillators…) 82 Se 2 kg production, purification and source making (2004-2005) 150 Nd enrichment study N4 : next generation of detectors NEMO-Next working groups and Proposal 300 kEuros 60 kEuros IN2P3 (5 years)
38
NOUVEAUX COLLABORATEURS SONT LES BIENVENUS New members already interested: USA (Texas University), UK (UCL), Japan (KEK)
39
CONCLUSIONS NEMO-3 Detector running since 14 Feb. 2003 Data tacking efficiency ~75% Performance of the detector has been reached ! preliminary results for 100 Mo, 82 Se and 150 Nd already more than 75.000 events collected Background study for search: 208 Tl (e N channel) : good agreement with HPGe measurements Neutrons and High-energy : only 1 -like event > 4 MeV ! Radon: 20-30 mBq/m3 inside the detector a few -like events/year expected Too high ! Free radon purification system under construction Radon/8 in Feb. 2004 Radon/50 in Spring 2004 Future of NEMO: First meeting 3-5 december 2003 start working groups to prepare a design proposal for a next detector Goal (dream ?) for Next NEMO: be able to « detect » 1 gold event/year with m ~ 20 meV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.