Presentation is loading. Please wait.

Presentation is loading. Please wait.

LUNASKA LUNASKA: Towards UHE Particle Astronomy with the Moon and Radio Telescopes Clancy W. James, University of Adelaide (Supervisors: R. Protheroe,

Similar presentations


Presentation on theme: "LUNASKA LUNASKA: Towards UHE Particle Astronomy with the Moon and Radio Telescopes Clancy W. James, University of Adelaide (Supervisors: R. Protheroe,"— Presentation transcript:

1 LUNASKA LUNASKA: Towards UHE Particle Astronomy with the Moon and Radio Telescopes Clancy W. James, University of Adelaide (Supervisors: R. Protheroe, R. Ekers)

2 LUNASKA ? GZK Neutrinos UHE protons interact with CMBR (GZK Interactions) Neutrino secondaries What are these cosmic accelerators? Is there a cut-off to the spectrum?

3 The ‘Ideal Messengers’ Neutrinos: Travel in strait lines – source identification! Rarely interact – observed flux = source flux! neutrino proton gamma * ? B-Fields

4 LUNASKA Auger: CR-AGN Correlation Science 318 (2007) CR can be used for astronomy More statistics needed

5 LUNASKA The Askaryan Effect 2. Cascade of secondaries 3. Negative charge excess 4. Coherent Cherenkov radiation O(3m) O(10cm) 5. Dense medium: Coherency in GHz regime. 1. UHE particle interaction

6 LUNASKA 13 Sep 2004 R. Ekers 6 The Lunar Cherenkov Technique neutrino radio waves (coherent Cherenkov radiation) shower cosmic ray GRB? DM? AGN? “A radio method to determine the origin of the highest-energy neutrinos and cosmic rays." SKA WSRT Goldstone ATCA Parkes Kalyazin

7 LUNASKA Signature Nanosecond-duration pulses These are transients! Must be distinguished against a thermal and RFI background This requires non-standard methods! Coherent Cherenkov Radiation Spectrum Broadband (peak < 5 GHz) 100% linearly polarised Coherent emission process Scaling in the coherent regime: –Voltage V: –Received power: Spectrum Predicted Observation

8 LUNASKA Experimental History Lunar Radio: Parkes 1995 (10 hrs) Goldstone 2000-2003 (120 hrs) Kalyazin ~(2000?)-2004 (~35 hrs) ATCA 2006- (~40 hrs) Westerbork 2007- (24 hrs) Other experiments: FORTE (satelite) ANITA (Antarctic balloon) Auger (hybrid CR) NO UHE Neutrinos Observed. How can we improve?

9 LUNASKA SKA – the Square Kilometre Array A giant next-generation radio array to be built in either western Australia or southern Africa by 2020. How can we use this to detect UHE particles? What can we do in the meantime?

10 LUNASKALUNASKA Collaboration R. Protheroe C. James R. McFadden R. Ekers P. Roberts C. Phillips With credits to: D. Jones, R. Crocker, S. Tingay, R. Bhat, J. Alvarez-Muniz, J. Bray A theoretical and experimental project for UHE neutrino astrophysics using a giant radio observatory. Use ATCA (Australia Telescope Compact Array) as an SKA test-bed. Simulate detection to improve sensitivity. “Lunar UHE Neutrino Astrophysics with the Square Kilometre Array”

11 LUNASKA Experimental Hurdles Triggering η sec time resolution Data rates too high for baseband recording: we must search for pulses in real time This requires fast (η sec) trigger logic Sensitivity Coherent addition of signals from: –A large collection area –A wide bandwidth Large antenna will only see a fraction of the Moon – use many small dishes or PAF Significant beamforming requirements RFI Discrimination Some terrestrial RFI still appears as a η sec pulse –car engines –internal electronics –unknown sources??? How to determine real events with a few nanoseconds of data? Ionospheric Dispersion The Earth’s ionosphere smears our signals & destroys the coherency This drastically reduces sensitivity We must correct for this in real time!

12 LUNASKA Ionospheric Dispersion Low frequencies High frequencies Night, solar cycle min Day, solar cycle max Ionospheric dispersion destroys the characteristic coherency of the pulses The effect is worse during the day, at low frequencies, and at solar cycle max

13 LUNASKADedispersion Ultimate Goal: We must measure and correct for ionospheric dispersion in real time. Must be performed coherently across the band Both steps are currently impossible. Final Technique: ‘the McFadden Method’ Lunar thermal emission few % polarised at limb This gets rotated in the Earth’s B-Field Measure Faraday rotation Model Earth’s B-field Derive dispersion measure We can use our source as our calibrator! B

14 LUNASKADedispersion A Hardware Implementation Design an analogue dedispersion filter set for our 1.2-1.8 GHz band Set for typical night-time dispersion (5.5 ns inc slant angle) Results We can use the dispersion to discriminate against terrestrial RFI Q: Could this have lunar origin? Terrestrial Impulse? True Event? Satelite-bounce? Predictions – from a 3am Analysis Observed Trigger

15 LUNASKA Timing Callibration: 3C273 Point antennas at a point source (bright quasar) Trigger off the noise cal pulse Correlate resulting buffers between antennas.

16 LUNASKA 2007 Observations Observations 3 days May 5-7 th 2007 (completed) Primarily hardware testing 5 hrs stable configuration ‘Targeted’ galactic centre region Next run: Feb 26-28 th 2008 Method 3 Antennas 1.2-1.8 GHz bandwidth 8-bit sampling Dual linear polarisation Independent Triggers (3x10 Hz) – at the time only millisecond relative timing was possible 1 μ sec (2048 sample) buffers recorded Data Reduction 120,000 candidates ~300 remain after dumb coincidence and RFI cuts Polarisation + ‘smart’ RFI cuts: 4 remain (expect ~6 thermal events) 2008: η sec timing would give 4/10 12 chance of a false detection Instantaneous Aperture NO PULSES DETECTED

17 LUNASKA Theoretical Hurdles Maximising Sensitivity Do we point at the centre of the Moon or at the limb? What frequency to use? What dish size? Directionality To which directions are we most sensitive? What parts of the sky currently have low limits? Cosmic Rays These generate showers very similar to that of neutrinos. Are the differences important? Reconstruction If we see a signal, what was the primary particle –Type (CR or nu)? –Energy? –Arrival direction? Surface Roughness The Moon is rough on all size scales: large (hills, craters) and small (rocks & perturbations ~ 1 wavelength) These effects are currently not well modelled.

18 LUNASKA Limb Brightening Various geometrical effects mean we expect more signals from the lunar limb (limb brightening). The effect is greatest at: –Low energies –High frequencies Small dishes (large beams) PAFs or Multibeams

19 LUNASKA Instantaneous Sensitivity Relative instantaneous sensitivity of Parkes antenna to 10^22 eV neutrinos for (left) limb-pointing and (right) centre-pointing. Peak sensitivity to a point source is 20 times the solid-angle averaged value. Conclusion: we can make targeted observations!

20 LUNASKA Current UHE Limits Goldstone Lunar UHE neutrino Experiment (GLUE) (plotted) Kalyazin observations (likely to be northern) ANITA & ANITA-lite (confined w/in yellow band) FORTE (threshold 10^23 eV, similar coverage to ANITA) 10^22 eV Target Here

21 LUNASKA Polarisation Signal Exit Position Instantaneous Aperture Reconstructing Arrival Direction UHE Particle Astronomy Neutrinos & the highest energy cosmic rays travel in straight lines Arrival directions correlate with the source. How do we determine this? Assumptions: 100-300 MHz Observations Resolution: 5” polarisation Remaining Uncertainty Lunar surface roughness Width of Cherenkov cone Determining Arrival Direction Instantaneous aperture is large Apparent signal exit position correlates with particle arrival direction. Polarisation aligns with the shower axis. This is a simplistic procedure

22 LUNASKA SKA Sensitivity to UHE Neutrinos UHE neutrino cross-section Small scale surface roughness Uncertainties: Depth of the regolith

23 LUNASKA SKA Sensitivity to UHE CR Uncertainties: Large-scale surface roughness ‘formation zone’ effects

24 LUNASKASummary Lunar Cherenkov Technique provides a method to detect the highest energy neutrinos and cosmic rays with ground-based radio-telescopes The SKA could use this technique to be a powerful instrument for UHE particle astronomy Cosmic Ray Detection: ~one Auger-year in one night Even a single detection of an UHE neutrino would open a new era in astronomy and become a key SKA science driver Ongoing observations w ATCA – keep your fingers crossed!


Download ppt "LUNASKA LUNASKA: Towards UHE Particle Astronomy with the Moon and Radio Telescopes Clancy W. James, University of Adelaide (Supervisors: R. Protheroe,"

Similar presentations


Ads by Google