Download presentation
Presentation is loading. Please wait.
1
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!) If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
2
Network Layer4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing
3
Network Layer4-3 RIP ( Routing Information Protocol) r distance vector algorithm r included in BSD-UNIX Distribution in 1982 r distance metric: # of hops (max = 15 hops) D C BA u v w x y z destination hops u 1 v 2 w 2 x 3 y 3 z 2 From router A to subnets:
4
Network Layer4-4 RIP advertisements r distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement) r each advertisement: list of up to 25 destination subnets within AS
5
Network Layer4-5 RIP: Example Destination Network Next Router Num. of hops to dest. wA2 yB2 zB7 x--1 ….…..... w xy z A C D B Routing/Forwarding table in D
6
Network Layer4-6 RIP: Example Destination Network Next Router Num. of hops to dest. wA2 yB2 zB A7 5 x--1 ….…..... Routing/Forwarding table in D w xy z A C D B Dest Next hops w - 1 x - 1 z C 4 …. …... Advertisement from A to D
7
Network Layer4-7 RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead m routes via neighbor invalidated m new advertisements sent to neighbors m neighbors in turn send out new advertisements (if tables changed) m link failure info quickly (?) propagates to entire net m poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)
8
Network Layer4-8 RIP Table processing r RIP routing tables managed by application-level process called route-d (daemon) r advertisements sent in UDP packets, periodically repeated physical link network forwarding (IP) table Transprt (UDP) routed physical link network (IP) Transprt (UDP) routed forwarding table
9
Network Layer4-9 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing
10
Network Layer4-10 OSPF (Open Shortest Path First) r “open”: publicly available r uses Link State algorithm m LS packet dissemination m topology map at each node m route computation using Dijkstra’s algorithm r OSPF advertisement carries one entry per neighbor router r advertisements disseminated to entire AS (via flooding) m carried in OSPF messages directly over IP (rather than TCP or UDP
11
Network Layer4-11 OSPF “advanced” features (not in RIP) r security: all OSPF messages authenticated (to prevent malicious intrusion) r multiple same-cost paths allowed (only one path in RIP) r For each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort; high for real time) r integrated uni- and multicast support: m Multicast OSPF (MOSPF) uses same topology data base as OSPF r hierarchical OSPF in large domains.
12
Network Layer4-12 Hierarchical OSPF
13
Network Layer4-13 Hierarchical OSPF r two-level hierarchy: local area, backbone. m Link-state advertisements only in area m each nodes has detailed area topology; only know direction (shortest path) to nets in other areas. r area border routers: “summarize” distances to nets in own area, advertise to other Area Border routers. r backbone routers: run OSPF routing limited to backbone. r boundary routers: connect to other AS’s.
14
Network Layer4-14 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing
15
Network Layer4-15 Internet inter-AS routing: BGP r BGP (Border Gateway Protocol): the de facto standard r BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate reachability information to all AS- internal routers. 3. Determine “good” routes to subnets based on reachability information and policy. r allows subnet to advertise its existence to rest of Internet: “I am here”
16
Network Layer4-16 BGP basics r pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: BGP sessions m BGP sessions need not correspond to physical links. r when AS2 advertises a prefix to AS1: m AS2 promises it will forward datagrams towards that prefix. m AS2 can aggregate prefixes in its advertisement 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c eBGP session iBGP session
17
Network Layer4-17 Distributing reachability info r using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. m 1c can then use iBGP do distribute new prefix info to all routers in AS1 m 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session r when router learns of new prefix, it creates entry for prefix in its forwarding table. 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c eBGP session iBGP session
18
Network Layer4-18 Path attributes & BGP routes r advertised prefix includes BGP attributes. m prefix + attributes = “route” r two important attributes: m AS-PATH: contains ASs through which prefix advertisement has passed: e.g, AS 67, AS 17 m NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS) r when gateway router receives route advertisement, uses import policy to accept/decline.
19
Network Layer4-19 BGP route selection r router may learn about more than 1 route to some prefix. Router must select route. r elimination rules: 1. local preference value attribute: policy decision 2. shortest AS-PATH 3. closest NEXT-HOP router: hot potato routing 4. additional criteria
20
Network Layer4-20 BGP messages r BGP messages exchanged using TCP. r BGP messages: m OPEN: opens TCP connection to peer and authenticates sender m UPDATE: advertises new path (or withdraws old) m KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request m NOTIFICATION: reports errors in previous msg; also used to close connection
21
Network Layer4-21 BGP routing policy r A,B,C are provider networks r X,W,Y are customer (of provider networks) r X is dual-homed: attached to two networks m X does not want to route from B via X to C m.. so X will not advertise to B a route to C A B C W X Y legend : customer network: provider network
22
Network Layer4-22 BGP routing policy (2) r A advertises path AW to B r B advertises path BAW to X r Should B advertise path BAW to C? m No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers m B wants to force C to route to w via A m B wants to route only to/from its customers! A B C W X Y legend : customer network: provider network
23
Network Layer4-23 Why different Intra- and Inter-AS routing ? Policy: r Inter-AS: admin wants control over how its traffic routed, who routes through its net. r Intra-AS: single admin, so no policy decisions needed Scale: r hierarchical routing saves table size, reduced update traffic Performance: r Intra-AS: can focus on performance r Inter-AS: policy may dominate over performance
24
Network Layer4-24 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing
25
Network Layer4-25 R1 R2 R3R4 source duplication R1 R2 R3R4 in-network duplication duplicate creation/transmission duplicate Broadcast Routing r deliver packets from source to all other nodes r source duplication is inefficient: r source duplication: how does source determine recipient addresses?
26
Network Layer4-26 In-network duplication r flooding: when node receives brdcst pckt, sends copy to all neighbors m Problems: cycles & broadcast storm r controlled flooding: node only brdcsts pkt if it hasn’t brdcst same packet before m Node keeps track of pckt ids already brdcsted m Or reverse path forwarding (RPF): only forward pckt if it arrived on shortest path between node and source r spanning tree m No redundant packets received by any node
27
Network Layer4-27 A B G D E c F A B G D E c F (a) Broadcast initiated at A (b) Broadcast initiated at D Spanning Tree r First construct a spanning tree r Nodes forward copies only along spanning tree
28
Network Layer4-28 A B G D E c F 1 2 3 4 5 (a)Stepwise construction of spanning tree A B G D E c F (b) Constructed spanning tree Spanning Tree: Creation r Center node r Each node sends unicast join message to center node m Message forwarded until it arrives at a node already belonging to spanning tree
29
Multicast Routing: Problem Statement r Goal: find a tree (or trees) connecting routers having local mcast group members m tree: not all paths between routers used m source-based: different tree from each sender to rcvrs m shared-tree: same tree used by all group members Shared tree Source-based trees
30
Approaches for building mcast trees Approaches: r source-based tree: one tree per source m shortest path trees m reverse path forwarding r group-shared tree: group uses one tree m minimal spanning (Steiner) m center-based trees …we first look at basic approaches, then specific protocols adopting these approaches
31
Shortest Path Tree r mcast forwarding tree: tree of shortest path routes from source to all receivers m Dijkstra’s algorithm R1 R2 R3 R4 R5 R6 R7 2 1 6 3 4 5 i router with attached group member router with no attached group member link used for forwarding, i indicates order link added by algorithm LEGEND S: source
32
Reverse Path Forwarding if (mcast datagram received on incoming link on shortest path back to center) then flood datagram onto all outgoing links else ignore datagram rely on router’s knowledge of unicast shortest path from it to sender each router has simple forwarding behavior:
33
Reverse Path Forwarding: example result is a source-specific reverse SPT –may be a bad choice with asymmetric links R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member datagram will be forwarded LEGEND S: source datagram will not be forwarded
34
Reverse Path Forwarding: pruning r forwarding tree contains subtrees with no mcast group members m no need to forward datagrams down subtree m “prune” msgs sent upstream by router with no downstream group members R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member prune message LEGEND S: source links with multicast forwarding P P P
35
Shared-Tree: Steiner Tree r Steiner Tree: minimum cost tree connecting all routers with attached group members r problem is NP-complete r excellent heuristics exists r not used in practice: m computational complexity m information about entire network needed m monolithic: rerun whenever a router needs to join/leave
36
Center-based trees r single delivery tree shared by all r one router identified as “center” of tree r to join: m edge router sends unicast join-msg addressed to center router m join-msg “processed” by intermediate routers and forwarded towards center m join-msg either hits existing tree branch for this center, or arrives at center m path taken by join-msg becomes new branch of tree for this router
37
Center-based trees: an example Suppose R6 chosen as center: R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member path order in which join messages generated LEGEND 2 1 3 1
38
Internet Multicasting Routing: DVMRP r DVMRP: distance vector multicast routing protocol, RFC1075 r flood and prune: reverse path forwarding, source-based tree m RPF tree based on DVMRP’s own routing tables constructed by communicating DVMRP routers m no assumptions about underlying unicast m initial datagram to mcast group flooded everywhere via RPF m routers not wanting group: send upstream prune msgs
39
DVMRP: continued… r soft state: DVMRP router periodically (1 min.) “forgets” branches are pruned: m mcast data again flows down unpruned branch m downstream router: reprune or else continue to receive data r routers can quickly regraft to tree m following IGMP join at leaf r odds and ends m commonly implemented in commercial routers m Mbone routing done using DVMRP
40
Tunneling Q: How to connect “islands” of multicast routers in a “sea” of unicast routers? mcast datagram encapsulated inside “normal” (non-multicast- addressed) datagram normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router receiving mcast router unencapsulates to get mcast datagram physical topology logical topology
41
PIM: Protocol Independent Multicast r not dependent on any specific underlying unicast routing algorithm (works with all) r two different multicast distribution scenarios : Dense: group members densely packed, in “close” proximity. bandwidth more plentiful Sparse: # networks with group members small wrt # interconnected networks group members “widely dispersed” bandwidth not plentiful
42
Consequences of Sparse-Dense Dichotomy: Dense r group membership by routers assumed until routers explicitly prune r data-driven construction on mcast tree (e.g., RPF) r bandwidth and non- group-router processing profligate Sparse : r no membership until routers explicitly join r receiver- driven construction of mcast tree (e.g., center-based) r bandwidth and non-group- router processing conservative
43
PIM- Dense Mode flood-and-prune RPF, similar to DVMRP but underlying unicast protocol provides RPF info for incoming datagram less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm has protocol mechanism for router to detect it is a leaf-node router
44
PIM - Sparse Mode r center-based approach r router sends join msg to rendezvous point (RP) m intermediate routers update state and forward join r after joining via RP, router can switch to source-specific tree m increased performance: less concentration, shorter paths R1 R2 R3 R4 R5 R6 R7 join all data multicast from rendezvous point rendezvous point
45
PIM - Sparse Mode sender(s): r unicast data to RP, which distributes down RP-rooted tree r RP can extend mcast tree upstream to source r RP can send stop msg if no attached receivers m “no one is listening!” R1 R2 R3 R4 R5 R6 R7 join all data multicast from rendezvous point rendezvous point
46
Network Layer4-46 Chapter 4: summary r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.