Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Détection des textes dans les images issues d’un flux vidéo pour l´indexation sémantique Laboratoire d'Informatique en Images et Systèmes d'information.

Similar presentations


Presentation on theme: "1 Détection des textes dans les images issues d’un flux vidéo pour l´indexation sémantique Laboratoire d'Informatique en Images et Systèmes d'information."— Presentation transcript:

1 1 Détection des textes dans les images issues d’un flux vidéo pour l´indexation sémantique Laboratoire d'Informatique en Images et Systèmes d'information LIRIS, FRE 2672 CNRS Bât. Jules Verne, INSA de Lyon 69621 Villeurbanne cedex 1 juillet 2004 Christian.wolf@liris.cnrs.fr http://rfv.insa-lyon.fr/~wolf Christian Wolf

2 2 FeaturesIntroductionEvaluationConclusionText detectionResults Introduction Features Evaluation/ Choice of features Text detection Conclusion Experimental Results Plan

3 3 Image/video indexing Content based image retrieval (Master’s degree): Query by example: Indexing based on local texture (Gabor) features Video indexing using semantic descriptors (PhD) : Text detection, enhancement, segmentation and recognition. Result keyword-based Search Patrick Mayhew Min. chargé de l´irlande de Nord ISRAEL Jerusalem montage T.Nouel... Key word Indexing phase FeaturesIntroductionEvaluationConclusionText detectionResults

4 4 Text detection “Soukaina Oufkir” Detection Enhancement Segmentation FeaturesIntroductionEvaluationConclusionText detectionResults

5 5 Detection in an image Contrast and Edge features Geometrical features Texture features Color features Problems: Which features? How can the decision be taken (text - non-text)? Separate populations (discriminant analysis) Learning a model (SVM, etc.) Reinforcement learning Master’s thesis of Graham Taylor Heuristics Region/stroke segmentation Corner features FeaturesIntroductionEvaluationConclusionText detectionResults

6 6 FeaturesIntroductionEvaluationConclusionText detectionResults Introduction Features Evaluation/ Choice of features Text detection Conclusion Experimental Results Plan

7 7 Videos vs. scanned documents Temporal aspects Complex and moving background Artificial shadows FeaturesIntroductionEvaluationConclusionText detectionResults

8 8 Videos vs. scanned documents Low resolution Low quality Antialising artifacts Compression artifacts Color bleeding FeaturesIntroductionEvaluationConclusionText detectionResults

9 9 What is text? - character segmentation Artificial text Scene text FeaturesIntroductionEvaluationConclusionText detectionResults

10 10 What is text? - texture Example: Gabor energy features on a text image Original imageFilter tuned to the example text Gabor energyThresholded Gabor energy FeaturesIntroductionEvaluationConclusionText detectionResults

11 11 What is text? - texture Still imagesIntroductionVideosIndexingCharacter segmentationResults

12 12 What is text? - corners Unthresholded “Harris” corner response FeaturesIntroductionEvaluationConclusionText detectionResults Derivative2nd derivative smeared

13 13 What is text? - contrast & geometry Example image Accumulated horizontal Sobel edges FeaturesIntroductionEvaluationConclusionText detectionResults

14 14 What is text? - color Original image Sobel on grayscale image Modified Sobel on L*u*v* image Special cases of text: Small contrast in the lumination plane High(er) contrast in the color plane FeaturesIntroductionEvaluationConclusionText detectionResults

15 15 FeaturesIntroductionEvaluationConclusionText detectionResults Introduction Features Text detection Conclusion Experimental Results Plan Evaluation/ Choice of features

16 16 Evaluation A good evaluation algorithm permits: A simple and intuitive interpretation of the obtained performance An objective comparison between the different algorithms to evaluate A good correspondence between the performance measures and the real performance, taking into account the objective of the algorithm (goal oriented approach) Takes into account only the performance of the algorithm, without side effects of other processing steps FeaturesIntroductionEvaluationConclusionText detectionResults

17 17 Evaluation at different levels Statistical separation: Bhattacharyya distance Error rate, Recall/Precision on pixel level Recall/Precision on rectangle level Goal oriented: Recall/Precision on character level Higher relevance to the application Lower influence of later stages Lower computational complexity Patrick Mayhew Min. chargé de l´irlande de Nord ISRAEL Jerusalem montage T.Nouel... Patrick Mayhew Min. chargé de l´irlande de Nord ISRAEL Jerusalem montage T.Nouel... Detection resultGround truth FeaturesIntroductionEvaluationConclusionText detectionResults

18 18 Evaluation on rectangle level DetectionGround truth Pure overlap is ambiguous on multiple images: 50% of recall could mean: 50% of the text rectangles have been detected perfectly 100% of the rectangles have been detected with 50% surface Anything between the two... FeaturesIntroductionEvaluationConclusionText detectionResults

19 19 Evaluation on rectangle level Requirements of an evaluation measure: Tells intuitively how many rectangles have been detected, and how many false alarms Measures the detection quality Takes into account one-2-one, one-2-many and many-2-one matches Scales up to multiple images Counts number of correctly detected rectangles Measures the detection quality Problem: Contradiction FeaturesIntroductionEvaluationConclusionText detectionResults

20 20 Performance graphs Ground truth G i Detection D i “Surface” Recall and Precision: Thresholded by different thresholds on recall and precision For each rectangle, we will know whether it has been detected or not, depending on a quality threshold FeaturesIntroductionEvaluationConclusionText detectionResults

21 21 Performance graphs Threshold on surface recall Threshold on surface precision FeaturesIntroductionEvaluationConclusionText detectionResults

22 22 Comparison of different detection algorithms Method 1: Local contrast Method 2: SVM Learning FeaturesIntroductionEvaluationConclusionText detectionResults

23 23 The influence of the test database Local contrastSVM learning FeaturesIntroductionEvaluationConclusionText detectionResults

24 24 FeaturesIntroductionEvaluationConclusionText detectionResults Introduction Features Conclusion Experimental Results Plan Evaluation/ Choice of features Text detection

25 25 The local contrast method Calculate a text probability image according to a text model (1 value/ pixel) Separate the probability values into 2 classes. Post processing Fisher/Otsu Mathematical morphology Geometrical constraints Verification of special cases Combination of rectangles F. LeBourgeois Still imagesIntroductionVideosConclusionCharacter segmentationResults

26 26 The learning method Learning gray values and edge maps alone may not generalize enough. Texture alone is not reliable, especially if the text is short. Geometry is a valuable feature. State of the art: enforce geometrical constraints in the post-processing step (mathematical morphology) We propose the usage of geometrical features very early in the detection process, i.e. not during post-processing. FeaturesIntroductionEvaluationConclusionText detectionResults

27 27 Geometrical features: baseline Text consists of: A high density of strokes in direction of the text baseline. A consistent baseline (a rectangular region with an upper and lower border). Two detection philosophies: Detection of the baseline directly before detecting the text region. Detection of the baseline as the boundary area of the detected text region in order to refine the detection quality. FeaturesIntroductionEvaluationConclusionText detectionResults

28 28 Estimation of the text rectangle height Original image Accumulated gradients FeaturesIntroductionEvaluationConclusionText detectionResults

29 29 Mode width (=rectangle height)Mode height (=Contrast)Difference height left-right Mode meanMode standard deviationDifference in mode width Features IntroductionEvaluationConclusionText detectionResults

30 30 Learning with Support Vector Machines Training image database positive samplesnegative samples Classification step: a reduction of the computational complexity is necessary: Sub-sampling of the pixels to classify (4x4) Approximation of the SVM model by SVM-regression. Bootstrapping, cross-validation FeaturesIntroductionEvaluationConclusionText detectionResults

31 31 FeaturesIntroductionEvaluationConclusionText detectionResults Introduction Features Conclusion Plan Evaluation/ Choice of features Text detection Experimental Results

32 32 FeaturesIntroductionEvaluationConclusionText detectionResults AIM3 News AIM4 Cartoons, News AIM5 News AIM2 Commercials

33 33 Detection in still images Local contrast SVM learning FeaturesIntroductionEvaluationConclusionText detectionResults

34 34 FeaturesIntroductionEvaluationConclusionText detectionResults Local contrast SVM learning

35 35 FeaturesIntroductionEvaluationConclusionText detectionResults Local contrast SVM learning

36 36 Detection in video sequences FeaturesIntroductionEvaluationConclusionText detectionResults

37 37 Character segmentation: examples Original image Fisher/Otsu Fisher/Otsu (windowed) Yanowitz-B. Yanowitz-B. +post-proc. Niblack Sauvola et al. Contrast maximiz. FeaturesIntroductionEvaluationConclusionText detectionResults

38 38 OCR results Local contrast based binarization Recognition by Abby Finereader 5.0 Sauvola et al. MRF Bayesian estimation using a Markov random field prior FeaturesIntroductionEvaluationConclusionText detectionResults

39 39 TREC 2002 “Dance” “Energy Gas” “Music” “Oil” “Airline” “Air plane” FeaturesIntroductionEvaluationConclusionText detectionResults Collaboration with Laboratory LAMP, University of Maryland

40 40 Conclusion êThe choice of features is primordial in vision. êWe developed a new system for detection, tracking, enhancement and binarisation of text. êDetection performance is high due to the integration of several types of features in a very early stage. The learning method is less sensitive to textured noise in the image. êWe propose a new evaluation method which allows intuitive visualization of the detection quality by performance graphs. FeaturesIntroductionEvaluationConclusionText detectionResults

41 41 Outlook êPossible improvement of the features (e.g. contrast normalization, non-linear texture filters). êIntegration of different feature types (statistical, structural,...) êUsage of a priori knowledge on text in order to decrease the number of false alarms êIntegration of the detected text into a indexing/browsing/segmentation framework FeaturesIntroductionEvaluationConclusionText detectionResults

42 42 Optional slides

43 43 The Bhattacharyya distance


Download ppt "1 Détection des textes dans les images issues d’un flux vidéo pour l´indexation sémantique Laboratoire d'Informatique en Images et Systèmes d'information."

Similar presentations


Ads by Google