Download presentation
Presentation is loading. Please wait.
1
DNA: Structure, Dynamics and Recognition Les Houches 2004 L4: DNA deformation
2
BASE PAIR OPENING
3
Biological time scale Bond vibrations1 fs(10 -15 s) Sugar repuckering1 ps(10 -12 s) DNA bending 1 ns(10 -9 s) Domain movement1 s(10 -6 s) Base pair opening1 ms(10 -3 s) Transcription2.5 ms / nucleotide Protein synthesis6.5 ms / amino acid Protein folding~ 10 s RNA lifetime~ 300 s
4
Enzymatic base chemistry
5
Adenine-Thymine base pair HN3 imino proton S S
6
Guanine-Cytosine base pair HN1 imino proton S S
7
Base opening lifetimes GC15-25 ms AT 5-10 ms C G C A A G A A G C G * * 4 1 1 23 4 5 4 * *
8
A 4 T 4 versus T 4 A 4 T T T T A A A A 1 17 19 4 4 19 17 1 A A A A T T T T 60 100 100 65 65 100 100 60 Leroy et al. Biochemistry 27, 1988, 8894 Base pair lifetimes (ms) 15°C
9
B-DNA - 2ns dynamic trajectory
10
Free energy calculations using restrained opening Guidice et al. ChemPhysChem 2, 2001, 673 Varnai & Lavery J. Am. Chem. Soc. 124, 2002, 7272
11
WHAM FREE ENERGY PROFILE BIASED PROBABILITY HISTOGRAM N(q) W(q) Reaction coordinate (q) Nw P* i (q) exp [ V i (q)] i =1 P i (q) Nw n i exp [F i (q) V i (q)] i =1 Nw F i (q) kT ln P i (q) i =1
12
B-DNA oligonucleotide studied CTCTCTCTCTCTC GAGAGAGAGAGAG
13
Extraction d’une base de l’ADN
14
Closed AT pair
15
Adenine –50° (minor)
16
Adenine –100° (minor)
17
Adenine +50° (major)
18
Adenine +100° (major)
19
Free energy curves for base opening
20
Imino proton accessibility (Å 2 ) T G
21
Base movements are coupled Adenine (°) Thymine (°) Adenine (°)
22
Sequence effects on opening: A-tracts T A-tract T Ref
23
Bending amplitude (°) < -50° -50° < < +50° > +50° G T
24
A word of warning!
25
BASE FLIPPING
26
Hha1 methyltransferase Klimašauskas et al. Cell 76 (1994) 357
27
Minor groove Major groove
28
-200° opening +160° opening
29
Backbone rearrangements
31
SUPERCOILING
32
DNA supercoiling (circular plasmid)
33
DNA supercoiling L = linking number = number of strand crossings T = twist = number of turns of double helix W = writhe = number of helix crossovers L = T + W = supercoiling density = (L – L 0 ) / L 0 = L / L 0 typically ~ -0.06 (1 crossing less per 17 turns)
34
Linking number (L or L k ) – a topological constant
35
Twist (T) versus Writhe (W) Low forceHigh force
36
L = T + W
37
Interwound and toroidal forms of a negatively supercoiled plasmid L.H. R.H.
38
Ethidium bromide intercalates into DNA and reduces its twist by ~26°
39
Effect of an intercalator on a negatively supercoiled plasmid
40
Topoisomerases Topoisomerase I- single strand cuts - releases negative supercoiling Topoisomerase II- double strand cuts (eukaryotes)- releases negative supercoiling Topo II (gyrase)- generates negative supercoiling (prokaryotes)- consumes ATP Reverse gyrase- generates positive supercoiling (thermophiles)
41
Topoisomerase I – single strand cuts
42
Topoisomerase II – double strand cuts
43
Topo II (gyrase) DNA wrapping
44
DNA packed on nucleosomes
45
Nucleosome – schematic view
46
EXTREME DEFORMATIONS
47
DNA stretching Cluzel et al. Science 271, 1996, 792
48
70 pN phase transition
49
S-DNA: fibre and ribbon forms
50
Fibre diffraction of stretched DNA Greenall et al. J. Mol. Biol. 2001, 305, 669 Rise ~ 5.6 Å Helix spacing ~ 13 Å
51
TBP-DNA complex
52
DNA: local stretching 3' 5' 3' 5' Major Minor
53
DNA: global and local 3'3' stretching
54
TBP induced deformation X-rayModel
55
Magnetic twisting control DIG : AntiDIG Biotin : Streptavidin NS Strick et al. Biophys. J. 74, 1998, 2016 Allemand et al. Proc. Natl. Acad. Sci. (USA) 95, 1998, 14152
56
Twisted DNA forms plectonemes
57
DNA twisting under tension > 3 pN < 0.3 pN
58
Simulation of DNA twisting
59
Simulating twisting
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.