Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ballistic conductance of suspended nanowires: An ab initio description

Similar presentations


Presentation on theme: "Ballistic conductance of suspended nanowires: An ab initio description"— Presentation transcript:

1 Ballistic conductance of suspended nanowires: An ab initio description
M. Czerner1, A. Bagrets1, N. Papanikolaou2, V.S. Stepanyuk3 and I. Mertig1 1Martin-Luther-Universität Halle, Germany 2Institute of Material Science, National Center for Scientific Research „Demokritos“, Athens, Greece 3 Max-Planck-Institute Mikrostrukturphysik Halle, Germany ADMOL Dresden,

2 Relaxation and conductance Impurity scattering
Content Motivation Method Parity oscillations Relaxation and conductance Impurity scattering Ballistic magnetoconductance Summary ADMOL Dresden,

3 H. Ohnishi, Yu. Kondo, K. Takayanagi, Nature 395, 780 (1998)
Motivation Metallic Nanowires Conductance H. Ohnishi, Yu. Kondo, K. Takayanagi, Nature 395, 780 (1998) KKR-Workshop München,

4 KKR Green‘s function method
Semi-infinite leads Suspended nanowire ADMOL Dresden,

5 Landauer theory with Green‘s functions
Landauer formula 1 Sample 2 Conductance Matrix elements H.U. Baranger and A.D. Stone, Phys. Rev. B 40, 8169 (1989) ADMOL Dresden,

6 Conductance of Cu wires
Local partial DOS at central Cu atom Cu fcc [100] Conductance histogram at T=4.2K for Cu, A. I. Yanson, PhD. Thesis, Leiden University, the Netherlands, 2001. G = 1.10 G0 ADMOL Dresden,

7 Conductance of Cu wires
Local partial DOS at central Cu atom Conductance histogram at T=4.2K for Cu, A. I. Yanson, PhD. Thesis, Leiden University, the Netherlands, 2001. G = 2.59 G0 Cu fcc [100] ADMOL Dresden,

8 Parity oscillation in the conductance of Cu wires
Experiment KKR calculation R.H.M. Smit et al., Phys. Rev. Lett. 91, (2003) M. Czerner, diploma thesis, MLU Halle (2003) ADMOL Dresden,

9 Even-odd parity effect in the density of states
s-LDOS p-LDOS ADMOL Dresden,

10 Stress and conductance in a Cu wire
Averaged stress Conductance Distance d (Å) a b c Average stress per Cu atom (ev/ų) V.S.Stepanyuk et al., Phys. Rev. B (2003) M. Czerner, diploma thesis, MLU Halle (2003) ADMOL Dresden,

11 Conductance through sp-atoms
sp impurity (Z = ) ADMOL Dresden,

12 Conductance through sp-atoms
sp impurity (Z = ) ADMOL Dresden,

13 Conductance through sp-atoms
sp impurity (Z = ) ADMOL Dresden,

14 Conductance through 3d transition metal atoms
3d impurity (Z = ) ADMOL Dresden,

15 Conductance through 3d transition metal atoms
3d impurity (Z = ) ADMOL Dresden,

16 Conductance through 3d transition metal atoms
3d impurity (Z = ) ADMOL Dresden,

17 Conductance through 3d transition metal atoms
3d impurity (Z = ) ADMOL Dresden,

18 Conductance through 3d transition metal atoms
ADMOL Dresden,

19 Conductance through 3d transition metal atoms
ADMOL Dresden,

20 Conductance through 3d transition metal atoms
ADMOL Dresden,

21 Conductance of Co wires
DOS Conductance ADMOL Dresden,

22 Ballistic Magnetoconductance
Parallel configuration (P) Antiparallel configuration (AP) MR =(gP – gAP)/gAP x 100% ADMOL Dresden,

23 Ballistic Magnetoconductance of Co wires
MR = 38 % MR = 29 % ADMOL Dresden,

24 Conductance depends strongly on geometry of the junction
Summary Conductance depends strongly on geometry of the junction II. Parity oscillations III. Relaxation enhances conductance III. Impurity scattering modulates conductance IV. Ballistic magnetoconductance is ~50 % ADMOL Dresden,


Download ppt "Ballistic conductance of suspended nanowires: An ab initio description"

Similar presentations


Ads by Google