Download presentation
Presentation is loading. Please wait.
1
1212 /k Action and Predicate Safety of Hybrid Processes Pieter Cuijpers Michel Reniers
2
1212 /k Overview HyPA Process representations Two levels of abstraction Specification of Safety Congruence Safety analysis of hybrid processes Conclusions
3
1212 /k HyPA termination deadlock actiondiscrete action cflow clause (V|Pred) d >> P, b >> Pre-initialization clause [V|Pred] P Palternative composition P Psequential composition P P, P Pdisrupt P || P, P P, P Pparallel composition H (P), Pred (P)encapsulation
4
1212 /k Hybrid automaton representation X i c i j J(i) d j >> action j X j HA i I d’ i >> X i cici d1d1 d2d2
5
1212 /k Constitutive hybrid process repr. X i ( j J(i) d j >> c j ) X i ( j J’(i) b j >> action j ) X i CHP || i I X i
6
1212 /k State-space representation (Linear hybrid process definition) X i j J(i) d j >> j J’(i) d j >> action j X j j J’’(i) d j >> c j X j SSR X init
7
1212 /k Two levels of abstraction On the lowest level of abstraction, HyPA is aimed at giving different representations of the same system. At a higher level of abstraction, HyPA can also be used to analyse, for example, safety properties.
8
1212 /k Two levels of abstraction Robust Bisimilarity Initially stateless bisimilarity= X Y implies X = Y
9
1212 /k Robust bisimilarity x x x y y x x (y z) (x y) z x x x x x (y z) (x y) z (x y) z (x z) (y z) x y x y y x x x (y z) (x y) z (x y) z (x z) (y z) d >> (x y) (d >> x) (d >> y) H (x y) H (x) H (y) etc. etc. etc.
10
1212 /k Initially stateless bisimilarity d >> action x=d >> action d ! >> x d >> c x=d >> c (d D(c)) ! >> x
11
1212 /k Specification of Safety Safety for actionsX= H (X) Safety for predicatesX= Pred (X)
12
1212 /k Congruence X [x|x + = 0] >> a1 a2 Y [x|x + = 0] >> a1 [x - = 0] >> a2 Z [x|x + = 1] >> a3 X=Y X || Z Y || Z
13
1212 /k Predicate safety of a state-space repr. When do we have SSR = Pred (SSR) ?
14
1212 /k Predicate safety of a state-space repr. Create a re-initialization for every recursion variable, signifying its reachable set. [true]=R init (R i d j ) ! R j for all i and all j J’(i) (R i d j D(c j )) ! R j for all i and all j J’’(i)
15
1212 /k Predicate safety of a state-space repr. When do we have R i >> X i = Pred (R i >> X i ), and especially SSR [true] >> X init = Pred ([true] >> X init ) Pred (SSR) ?
16
1212 /k Predicate safety of a state-space repr. R i >> X i R i >> ( j J(i) d j >> j J’(i) d j >> action j X j j J’’(i) d j >> c j X j )
17
1212 /k Predicate safety of a state-space repr. R i >> X i j J(i) (R i d j ) >> j J’(i) (R i d j ) >> action j X j j J’’(i) (R i d j ) >> c j X j
18
1212 /k Predicate safety of a state-space repr. R i >> X i = j J(i) (R i d j ) >> j J’(i) (R i d j ) >> action j (R j >> X j ) j J’’(i) (R i d j ) >> c j (R j >> X j )
19
1212 /k Predicate safety of a state-space repr. Pred (R i >> X i ) Pred ( R i >> ( j J(i) d j >> j J’(i) d j >> action j X j j J’’(i) d j >> c j X j ))
20
1212 /k Predicate safety of a state-space repr. Pred (R i >> X i ) Pred ( j J(i) (R i d j ) >> j J’(i) (R i d j ) >> action j X j j J’’(i) (R i d j ) >> c j X j )
21
1212 /k Predicate safety of a state-space repr. Pred (R i >> X i )= Pred ( j J(i) (R i d j ) >> j J’(i) (R i d j ) >> action j (R j >> X j ) j J’’(i) (R i d j ) >> c j (R j >> X j ) )
22
1212 /k Predicate safety of a state-space repr. Pred (R i >> X i )= j J(i) Pred ( (R i d j ) >> ) j J’(i) Pred ( (R i d j ) >> action j ) Pred ( R j >> X j ) j J’’(i) Pred ( (R i d j ) >> c j ) Pred ( R j >> X j )
23
1212 /k Predicate safety of a state-space repr. Assuming safety of the following processes: Pred ( (R i d j ) >> ) =(R i d j ) >> Pred ( (R i d j ) >> action j ) =(R i d j ) >> action j Pred ( (R i d j ) >> c j )= (R i d j ) >> c j
24
1212 /k Predicate safety of a state-space repr. Assuming safety of the following processes: Pred ( (R i d j ) >> action j ) =(R i d j ) >> action j Pred ( (R i d j ) >> c j )= (R i d j ) >> c j
25
1212 /k Predicate safety of a state-space repr. Pred (R i >> X i )= j J(i) (R i d j ) >> j J’(i) (R i d j ) >> action j Pred ( R j >> X j ) j J’’(i) (R i d j ) >> c j Pred ( R j >> X j )
26
1212 /k Predicate safety of a state-space repr. So R i >> X i and Pred (R i >> X i ) are both solutions of the state space definition: Y i = j J(i) (R i d j ) >> j J’(i) (R i d j ) >> action j Pred (Y i ) j J’’(i) (R i d j ) >> c j Pred (Y i )
27
1212 /k Predicate safety of a state-space repr. Thus R i >> X i = Pred (R i >> X i ) and hence SSR = Pred (SSR).
28
1212 /k Conclusions Different model representations. Analysis at the cost of congruence || Safety of state space representations depends on safety of sub-processes. Termination of analysis method is a problem Calculation of reachable sets is a problem
29
1212 /k Future research For CHP we have congruence || Termination using predicate abstraction Calculation/approximation of reachable sets Algebraic specification of other properties
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.