Presentation is loading. Please wait.

Presentation is loading. Please wait.

Verification of Parameterized Timed Systems Parosh Aziz Abdulla Uppsala University Johann Deneux Pritha Mahata Aletta Nylen.

Similar presentations


Presentation on theme: "Verification of Parameterized Timed Systems Parosh Aziz Abdulla Uppsala University Johann Deneux Pritha Mahata Aletta Nylen."— Presentation transcript:

1 Verification of Parameterized Timed Systems Parosh Aziz Abdulla Uppsala University Johann Deneux Pritha Mahata Aletta Nylen

2 Outline Parameterized Timed Systems Syntactic and Semantic Variants with one clock with several clocks discrete time domain Safety Properties

3 Parameterized System of Timed Processes – (Timed Networks) Timed Process: x:=0 x<5 Parameterized System:

4 Single Clock Timed Networks - TN(1) Timed Process: x:=0 x<5 (single clock) Parameterized System:

5 Challenge: arbitrary rather than fixed size x=0x<1x>1 x:=0 Fischer’s Protocol Timed Process: critical section Parameterized Network: arbitrary size

6 Single Clock Timed Networks - TN(1) State = Configuration 2.3 1.4 5.2 3.7 1.0 8.1 Timed Process: x:=0 x<5 (single clock) Parameterized System:

7 Initial Configurations 00 0 0 00 0 Single Clock Timed Networks - TN(1) Timed Process: x:=0 x<5 (single clock) Parameterized System:

8 2.8 1.9 5.7 4.2 0.5 8.6 2.3 1.4 5.2 3.7 0.0 8.1 Timed Transitions 0.5

9 x<5 x:=0 2.3 1.4 0.0 3.7 1.0 8.1 Discrete Transitions 2.3 1.4 5.2 3.7 1.0 8.1

10 Unbounded number of clocks Cannot be modeled as timed automata TN(1) :

11 Unbounded number of clocks Cannot be modeled as timed automata TN(1) : How to check Safety Properties ?

12 configurations equivalent if they agree (up to cmax) on:  colours  integral parts of clock values  ordering on fractional parts 3.1 4.8 1.5 6.2 5.6 3.2 4.8 1.6 6.4 5.7 Equivalence on Configurations

13 configurations equivalent if they agree (up to cmax) on:  colours  integral parts of clock values  ordering on fractional parts 3.1 4.8 1.5 6.2 5.6 3.2 4.8 1.6 6.4 5.7 Equivalence on Configurations 3.3 1.7 4.8

14 configurations equivalent if they agree (up to cmax) on:  colours  integral parts of clock values  ordering on fractional parts 3.1 4.8 1.5 6.2 5.6 3.2 4.8 1.6 6.4 5.7 3.3 1.7 4.8 3.1 1.8 4.9 Equivalence on Configurations

15 Ordering on Configurations c 1 c 2 iff c 3 :  c 1 c 3  c 3 c 2 < 3.1 4.8 1.5 6.2 5.6 4.9 6.4 5.7

16 Ordering on Configurations 3.1 4.8 1.5 6.2 5.6 4.9 6.4 5.7 4.8 6.2 5.6 c 1 c 2 iff c 3 :  c 1 c 3  c 3 c 2 <

17 mutual exclusion: Bad States : # processes in critical section > 1 Safety Properties x=0x<1x>1 x:=0 section critical 3.4 8.1

18 mutual exclusion: Bad States : # processes in critical section > 1 Ideal = Upward closed set of configurations Safety Properties x=0x<1x>1 x:=0 critical section 3.3 8.2 2.3 1.4 5.2 3.73.4 8.1

19 Ideal = Upward closed set of configurations Safety = reachability of ideals mutual exclusion: Bad States : # processes in critical section > 1 Safety Properties x=0x<1x>1 x:=0 critical section 3.3 8.2 2.3 1.4 5.2 3.73.4 8.1

20 Checking Safety Properties: Backward Reachability Analysis bad statesinitial states

21 Checking Safety Properties: Backward Reachability Analysis bad statesinitial states Pre

22 Checking Safety Properties: Backward Reachability Analysis bad statesinitial states Pre

23 Properties of -- Monotonicity c1c1 c3c3 c2c2

24 c1c1 c3c3 c2c2 c4c4

25 c1c1 c3c3 c2c2 c4c4 c5c5

26 c1c1 c3c3 c2c2 c4c4 c5c5 c6c6

27 c1c1 c3c3 c2c2 c4c4 c5c5 c6c6

28 Monotonicity ideals closed under computing Pre

29 I Monotonicity ideals closed under computing Pre

30 I Monotonicity ideals closed under computing Pre

31 I Monotonicity ideals closed under computing Pre

32 IPre(I) Monotonicity ideals closed under computing Pre

33 Checking Safety Properties: Backward Reachability Analysis bad statesinitial states Pre Ideals

34 Existential Zones x1x1 x2x2 x3x3 1 x 2 - x 1 2 x 2 - x 3

35 Existential Zones x1x1 x2x2 x3x3 1 x 2 - x 1 2 x 2 - x 3 3.1 7.2 4.6

36 Existential Zones minimal requirement x1x1 x2x2 x3x3 1 x 2 - x 1 2 x 2 - x 3 3.1 3.5 7.2 0.5 4.6 3.1 7.2 4.6

37 Existential Zones Existential Zone Ideal minimal requirement x1x1 x2x2 x3x3 1 x 2 - x 1 2 x 2 - x 3 3.1 3.5 7.2 0.5 4.6 3.1 7.2 4.6

38 Existential Zones – Computing Pre x1x1 x2x2 x3x3 1 x 2 - x 1 2 x 2 - x 3

39 Existential Zones – Computing Pre x1x1 x2x2 x4x4 1 x 2 - x 1 x5x5 2 x 5 4 x 4 x1x1 x2x2 x3x3 1 x 2 - x 1 2 x 2 - x 3 4 x 2 x

40 Checking Safety Properties: Backward Reachability Analysis bad statesinitial states Pre Existential Zones

41 Termination Existential Zones BQO (and therefore WQO)

42 Termination Existential Zones BQO (and therefore WQO) Theorem: Safety properties can be decided for TN(1)

43 Multi-Clock Timed Networks – TN(K) Timed Process: x:=0 x<5 Parameterized Network: Configuration 2.3 1.4 5.2 3.7 1.0 8.1 (two clocks) y>3 1.4 5.6 0.2 9.2 2.8 0.1 x y

44 Timed Transitions 0.5 2.3 1.4 5.2 3.7 1.0 8.1 1.4 5.6 0.2 9.2 2.8 0.1 x y x y 2.8 1.9 5.7 4.2 1.5 8.6 1.9 6.1 0.7 9.7 3.3 0.6

45 y<5x>4 x:=0 Discrete Transitions 2.3 1.4 5.2 3.7 1.0 8.1 1.4 5.6 0.2 9.2 2.8 0.1 x y 2.3 0.0 5.2 3.7 1.0 8.1 1.4 5.6 0.2 9.2 2.8 0.1 x y

46 x1x1 y1y1 1 y 2 - x 1 2 x 2 - y 1 x2x2 y2y2 x i and y i belong to the same process

47 Checking Safety Properties: Backward Reachability Analysis bad statesinitial states Pre Existential Zones

48 x 1 < x 2 < x 3 < x 4 y 1 = x 2 y 2 = x 3 y 3 = x 4 x1x1 y1y1 x2x2 y2y2 x3x3 y3y3 y 4 = x 1 y1y1 x1x1 y2y2 x2x2 x3x3 y3y3 x3x3 y3y3 x4x4 y4y4 Termination no longer guaranteed !!

49 x1x1 y1y1 y 1 = x 2 x2x2 y2y2 y 2 = x 1 x 1 < x 2 x1x1 x2x2 y1y1 y2y2 Termination no longer guaranteed !!

50 x1x1 y1y1 y 1 = x 2 x2x2 y2y2 y 2 = x 1 x 1 < x 2 x 1 < x 2 < x 3 y 1 = x 2 y 2 = x 3 y 3 = x 1 x1x1 y1y1 x2x2 y2y2 x3x3 y3y3 x1x1 x2x2 y1y1 y2y2 y1y1 x1x1 y2y2 x2x2 x3x3 y3y3 Termination no longer guaranteed !!

51 x 1 < x 2 < x 3 y 1 = x 2 y 2 = x 3 y 3 = x 1 x1x1 y1y1 x2x2 y2y2 x3x3 y3y3 x 1 < x 2 < x 3 < x 4 y 1 = x 2 y 2 = x 3 y 3 = x 4 x1x1 y1y1 x2x2 y2y2 x3x3 y3y3 y 4 = x 1 y1y1 x1x1 y2y2 x2x2 x3x3 y3y3 x3x3 y3y3 x4x4 y4y4 Termination no longer guaranteed !! y1y1 x1x1 y2y2 x2x2 x3x3 y3y3

52 Termination no longer guaranteed !!

53 Simulation of 2-counter machine by TN(2) Timed processes: One models control state Some model c 1 Some model c 2 The rest are idle c 1 ++ c 2 =0?c 2 -- M: Encoding of configurations in M:

54 Simulation of 2-counter machine c 1 ++ c 2 =0?c 2 -- M: Encoding of c 1 : # c 1 =3 left end 0.1 0.30.5 0.1 0.30.50.7 0.9 0.7 right end

55 Simulating a Decrement c 1 -- q1q1 q2q2 x=1 y=1 x:=0 q1q1 q2q2 idle 0<x y:=0 0.1 0.30.5 0.1 0.30.50.7 0.9 0.7

56 Simulating a Decrement c 1 -- q1q1 q2q2 x=1 y=1 x:=0 q1q1 q2q2 idle 0<x y:=0 0.1 0.2 0.40.6 0.2 0.40.60.8 1.0 0.8 0.1 0.30.5 0.1 0.30.50.7 0.9 0.7

57 Simulating a Decrement c 1 -- q1q1 q2q2 x=1 y=1 x:=0 q1q1 q2q2 idle 0<x y:=0 0.2 0.40.6 0.2 0.40.60.8 1.0 0.8 0.2 0.40.6 0.40.60.8 1.0 0.8

58 Simulating a Decrement c 1 -- q1q1 q2q2 x=1 y=1 x:=0 q1q1 q2q2 idle 0<x y:=0 0.2 0.40.6 0.40.60.8 1.0 0.8 0 0.40.6 0.40.60.8 1.0 0.8

59 Simulating a Decrement c 1 -- q1q1 q2q2 x=1 y=1 x:=0 q1q1 q2q2 idle 0<x y:=0 0 0.40.6 0.40.60.8 1.0 0.8 0 0.40.6 0.40.60.8 0

60 Simulating Zero Testing c 1 =0? q1q1 q2q2 x>0 y=1 x:=0 q1q1 q2q2 x=1 y:=0 0.2 0.7 0.5 0 0 1.0 0.3

61 Theorem: Checking Safety properties undecidable for TN(2)

62 Discrete Timed Networks - DTN(K) State = Configuration 2 1 5 3 1 8 Clocks interpreted over the discrete time domain 2 1 5 3 1 8 Timed Transitions 4 3 7 5 3 10 2

63 cmax = 1 0 1 2* 0 1 0 1 4 2 3 3 0 6 5 0 8 # processes having:  same state  clock value (up to cmax) Exact Abstraction

64 x=0 x:=0 x=1 0 1 2* 0 1 0 1 4 2 3 3 0 6 5 0 8 0 1 0 1 0 1 5 1 3 4 0 6 4 0 8 Discrete Transitions

65 0 1 2* 0 1 0 1 4 2 3 3 0 6 5 0 8 1 0 1 0 1 0 1 0 4 5 0 3 6 0 5 8 Timed Transitions

66 0 1 2* 0 1 0 1 4 2 3 3 0 6 5 0 8 Symbolic Representation minimal element

67 Checking Safety Properties: Backward Reachability Analysis bad statesinitial states Pre Minimal elements

68 Theorem: Checking Safety properties decidable for DTN(K)

69 Implementation

70 TPN - Parameterized Fischer 2 seconds

71 Lynch-Shavit’s Protocol

72 Parameterized Network: arbitrary size

73 TPN- Parameterized Lynch-Shavit 25 minutes

74 Syntactic Variants  Open timed networks: strict clock constraints  Closed timed networks: non-strict clock constraints undecidable decidable Semantic Variants  Robust timed networks: semantically strict clock constraints undecidable

75 Summary TN(1) : decidable TN(2) : undecidable DTN(K) : decidable TN(2) open : undecidable TN(K) closed : decidable TN(2) robust : undecidable

76 Future work  Acceleration and Widening  Forward Analysis  Price Timed Networks  Stochastic Variants


Download ppt "Verification of Parameterized Timed Systems Parosh Aziz Abdulla Uppsala University Johann Deneux Pritha Mahata Aletta Nylen."

Similar presentations


Ads by Google