Download presentation
Presentation is loading. Please wait.
1
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University of British Columbia Discussions: Gabriel Aeppli
2
Transverse field Ising model Interaction depends on dilution, FM or random Quantum phase transitions Quantum annealing Quantum dynamics
3
LiHoF - a model quantum magnet 4 S. Sachdev, Physics World 12, 33 (1999) Bitko, Rosenbaum, Aeppli PRL 77, 940 (1996)
4
Random field Ising model DAFM - Constant field is random in staggered magnetization - FM - Field conjugate to order parameter - Quantum fluctuations - Verification of results near transition “trompe l’oeil critical behavior” Experiments, crackling noise Away from criticality, applications Quantum dynamics, QPT S. Fishman and A. Aharony, J. Phys. C 12, L729 (1979) No FM realization
5
Outline RF in anisotropic dipolar magnets RF in anisotropic dipolar magnets Consequences in FM and SG regimes Consequences in FM and SG regimes LiHo system – hyperfine interactions LiHo system – hyperfine interactions – transverse dipolar int. – transverse dipolar int.
6
Anisotropic dipolar systems Magnetic insulators, large spin, strong lattice anisotropy, dominant dipolar interaction S-S Rare-earth magnetic insulators Single molecular magnets
7
Anisotropic dipolar systems - TFIM S-S Single molecular magnets Magnetic insulators, large spin, strong lattice anisotropy, dominant dipolar interaction Rare-earth magnetic insulators
8
QPT in dipolar magnets Bitko, Rosenbaum, Aeppli PRL 77, 940 (1996) Thermal and quantum transitions MF of TFIM MF with hyperfine
9
LiHoY F x1-x 4 Reich et al, PRB 42, 4631 (1990)
10
Dilution, transverse field – effective random longitudinal field S-S M. S. and N. Laflorencie, PRL 97, 137204 (2006) M. S., PRB 77, 020401(R) (2008)
11
Offdiagonal dipolar terms S-S M. S. and N. Laflorencie, PRL 97, 137204 (2006) M. S., PRB 77, 020401(R) (2008)
12
Offdiagonal dipolar terms S-S symmetry M. S. and N. Laflorencie, PRL 97, 137204 (2006) M. S., PRB 77, 020401(R) (2008)
13
Offdiagonal dipolar terms S-S symmetry M. S. and N. Laflorencie, PRL 97, 137204 (2006) M. S., PRB 77, 020401(R) (2008)
14
Are the fields random? Square of energy gain vs. N, different dilutions Inset: Slope as Function of dilution M. S., PRB 77, 020401(R), (2008)
15
Ferromagnetic RFIM S-S M. S., PRB 77, 020401(R) (2008)
16
Ferromagnetic RFIM S-S M. S., PRB 77, 020401(R) (2008)
17
Ferromagnetic RFIM S-S M. S. and P. Stamp, PRL 95, 267208 (2005) M. S., PRB 77, 020401(R) (2008) - Independently tunable random and transverse fields! - Classical RFIM despite applied transverse field
18
RF in disordered systems Transverse field, still, but no T. Transverse field, still, but no T. Disordered systems: no pure Ising without T symmetry. No pure TFIM in field. Disordered systems: no pure Ising without T symmetry. No pure TFIM in field. Anisotropic dipolar magnets: Anisotropic dipolar magnets: M. S. and P. Stamp, in preparation
19
Experimental realization Silevitch et al., Nature 448, 567 (2007) Sharp transition at high T, Rounding at low T (high transverse fields)
20
Random fields not specific to FM! Reich et al, PRB 42, 4631 (1990)
21
Dilution: quantum spin-glass -Thermal vs. Quantum disorder -Cusp diminishes as T lowered Wu, Bitko, Rosenbaum, Aeppli, PRL 71, 1919 (1993)
22
Spin glass – correlation length Flip a droplet – gain vs. cost: M.S. and N. Laflorencie, PRL 97, 137204 (2006) Fisher and Huse PRL 56, 1601 (1986); PRB 38, 386 (1988) Lower critical dimension – infinity! Droplet size – Correlation length Imry and Ma, PRL 35, 1399 (1975)
23
SG unstable to transverse field! Finite, transverse field dependent correlation length SG quasi M. S. and N. Laflorencie, PRL 97, 137204 (2006) No SG-PM QPT in transverse field!
24
Correlation length - experiment Jonsson, Mathieu, Wernsdorfer, Tkachuk, Barbara, PRL 98, 256403 (2007) Domains of >10^3 spins
25
Remarks Validity of droplet picture Validity of droplet picture Reduction of susceptibility in mean field Reduction of susceptibility in mean field - Tabei, Gingras, Kao, Stasiak, Fortin, PRL 97, 237203 (2006) - Young, Katzgraber, PRL 93, 207203 (2004) - Jonnson, Takayama, Katori, Ito, PRB 71, 180412(R) (2005) - Pirc, Tadic, Blinc, PRB 36, 8607 (1987)
26
Hyperfine interaction: electro- nuclear Ising states Wu, Bitko, Rosenbaum, Aeppli, PRL 71, 1919 (1993)
27
Hyperfine interaction: electro- nuclear Ising states Hyperfine spacing: 200 mK - M.S. and P. Stamp, PRL 95, 267208 (2005) - N. Prokof’ev and P. Stamp, Rep. Prog. Phys. 63, 669 (2000)
28
Hyperfine interaction: electro- nuclear Ising states Hyperfine spacing: 200 mK - M.S. and P. Stamp, PRL 95, 267208 (2005) - N. Prokof’ev and P. Stamp, Rep. Prog. Phys. 63, 669 (2000)
29
Enhanced transverse field – phase diagram SG PM No off. dip. With off. dip. Experiment M.S. and P. Stamp, PRL 95, 267208 (2005) Quantum disordering harder than thermal disordering Main reason – hyperfine interactions Off-diagonal dipolar terms in transverse field – also enhanced effective transverse field
30
Re-entrance of crossover field SG PM No off. dip. With off. dip. Experiment Larger x – stronger reduction of c-o field by offdiagonal dipolar terms! -M.S. and P. Stamp, PRB 78, 054438 (2008) - Ancona-Torres, Silevitch, Aeppli, Rosenbaum, PRL 101, 057201 (2008) X=0.167 X=0.045
31
Significance of the hf in the LiHo S-S-S
32
Electro-nuclear entanglement entropy M.S. and P. Stamp, PRB 78, 054438 (2008) At electron and nuclear spin disentangle! However …
33
Electro-nuclear entanglement entropy M.S. and P. Stamp, PRB 78, 054438 (2008) Ronnow et. Al. Science 308, 389 (2005)
34
LiHo at 4.5% - Quilliam et al., arXiv:0808.1370 - Ghosh et al., Science 296, 2195 (2002)
35
LiHo at 4.5% M.S. and P. Stamp, PRB 78, 054438 (2008) - Experiments are above expected glass temperature (35 mK) - Narrowing of absorption spectrum at hyperfine energy - Efffective transverse field too low to explain spin liquid state - Theoretically – expect SG at any x (Stephen Aharony) Stephen and Aharony, J. Phys. C 14, 1605 (1981)
36
Future research Experiment: Experiment: Quantum and classical PT in FM RFIM Quantum and classical PT in FM RFIM Hysteresis in the FM RFIM Hysteresis in the FM RFIM Materials with Materials with With With Pressure induced SG-PM QPT Pressure induced SG-PM QPT Theory Theory Spin bath and QPT Spin bath and QPT Dynamics Dynamics
37
Conclusions Dilution and transverse field induce random longitudinal field in Ising dipolar systems. Dilution and transverse field induce random longitudinal field in Ising dipolar systems. FM RFIM, no SG-PM QPT. FM RFIM, no SG-PM QPT. Disordered systems: Ising model is only realizable with time-reversal symmetry Disordered systems: Ising model is only realizable with time-reversal symmetry LiHo – hyperfine, offdiagonal dipolar interactions dictate low-T physics LiHo – hyperfine, offdiagonal dipolar interactions dictate low-T physics
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.