Download presentation
Presentation is loading. Please wait.
1
ハイパーノバとブラックホール Hypernovae and Black Holes 野本憲一 (Nomoto, Ken’ichi) 前田啓一 (Maeda, Keiichi) 東京大学大学院理学系研究科天文学専攻 University of Tokyo, School of Science, Department of Astronomy
2
SN 1998bw = SN 1987A E ~ 30×10 51 ergsE ~ 1×10 51 ergs
3
SNe IcSNe IIn SNGRBSNGRB 1998bw9804251997cy970514 1997ef9711151999E980910 1999as1988Z 2002ap1999eb991002 1997dq 1998ey 1992ar Hypernova Candidates E kinetic > (5-10)×10 51 ergs SN 1998bw GRB 980425
4
Observations: Spectra, Light Curves –Progenitors, Energetic, M( 56 Ni) The properties of Hypernova Explosions –Features unexpected by spherical models –Black Hole Formation Jet-Driven Explosion Model –Explains the above features? –Predictions Evolution of the central black hole. Nucleosynthetic features (e.g., 56 Ni) Gravitational wave (?) - Optical Display - Abundances
5
Possible Gravitational Wave from Hypernovae? M BH ~4M Low Viscosity Case M (R<300km) –0.0033 M High Viscosity Case –2.21 M –j~10 17 cm 2 s -1 Self-Gravity Large E ROT /|E GRAV | Macfadyen et al. 1998
6
Bar Mode Instability? R ~100km at Bounce M~1M J Conserve j~10 16 cm 2 s -1 R ~100km M DISK ~2M J Conserve j~10 17 cm 2 s -1 h~4×10 -20 (1Mpc/D) (j/10 17 cm 2 s -1 ) (M/M ) (f/1000Hz) f~1000 (j/10 17 cm 2 s -1 ) (100km/R) 2 e.g., Fryer et al.2002 SN at 10Mpc (1SN/year); f~100 Hz, h~4×10 -23 HN at 100Mpc (1HN/year); f~1000 Hz, h~8×10 -22
7
Ia Ic Ib 94I 97ef 98bw He CaO SiII Hyper -novae Spectra of Supernovae & Hypernovae Hypernovae : broad features blended lines “Large mass at high velocities” Ic: no H, no strong He, no strong Si
8
Light Curves of Supernovae & Hypernovae Light Curve Broadness SN1998bw >> SN1994I Ejected Mass SN1998bw >> SN1994I Progenitor’s Mass SN1998bw >> SN1994I
9
Parameters [M ej, E, M( 56 Ni)] Si C+O He H-rich M C+O Fe Collapse 56 Ni 56 Co 56 Fe M ms /M M C+O /M ~ 4013.8 ~ 3511.0 ~ 225.0 Light CurveSpectra ~ [ dyn diffusion ] 1/2 ~ R VR c M ej 1/2 ½ M ej ¾ E -¼ E M ej 3 E M ej CO Star Models for SNeIc 56 Ni
10
Spectral Fitting: SN1997ef Model Normal SN Small M ej Too Narrow Features
11
Spectral Fitting: SN1997ef Model Hypernova Large M ej Broad Features
12
Progenitors’ Mass – E – M( 56 Ni)
13
Most Stars (>25M ) explode as Hypernovae? The Contribution of Hypernovae is Large. –Hypernovae are Not so Rare Events.
14
Distribution of HNe Distance – Absolute Magnitude of SNe Ib/c 10 100 Mpc 1 HN per 1 year in R<100Mpc. 1 SN per 1 year in R<10Mpc.
15
Hypernova Rate Large Fraction of Massive O (or He) Star with M>20M Explodes as Hypernovae. Depending on Binary Evolution? Local SN Rate (SN/100yr/10 10 L ) h=H 0 /100 IaIb/cIIAll 0.36±.11h 2 0.14±.07h 2 0.71±.34h 2 1.21±.36h 2 Corrected 1) Observed 2) 111 18 54 183 1)Cappellaro et al. 99, 2)Richardson et al. 01 HNIb/c SNIb/c = 3(+1+2)/18 ~ 0.15 – 0.3 N(20M-50M) N(8M-20M) ~ 0.3 (Salpeter IMF)
16
Properties of Hypernova Explosions (1) Deviation from spherical explosion models (2) Black hole formation
17
1) Asphericity in Core-collapse SNe (in general) HST Image of SN1987A Wang et al. 2002 Optical Spectropolarimetry of SNe 1993J, 1996cb, Wang et al. 1999 SN1987A: Asymmetrical, but not spherical, ejecta Optical Polarization in core-collapse SNe > 0.5 % (in SNe Ia < 0.2 - 0.3%)
18
1998bw 1997ef 2002ap 1998bw 1997ef 2002ap High Density Spherical Hydro Model Low Density (Vacuum) 2) Light Curves of Hypernovae Maeda et al. 2003, ApJ, submitted
19
Observer Expansion Fe O Spherical FeII] 5200A [OI] 6300A Observation FWHM 3) Late time spectra of SN1998bw Line Width Inversion between Fe and O Broader Fe lines than O lines in the observations. Low velocity O-rich Matter: SNe1998bw, 1997ef
20
56 Fe 16 O Spherical Aspherical 15 deg FeII] 5200A [OI] 6300A Maeda et al. 2002 Observation Interpretation as an Aspherical explosion
21
Enhancement of O,Mg,Si,S,Ti by a factor of 6-10. Israelian et al. 1999 SN matter BH [X/H]=log 10 (X/H)-log 10 (X/H) 4) BH Formation
22
Hypernova model for the formation of the BH in Nova Sco BH mass in the model 4.8M at the explosion 5.4M now (Post SN) SN BH M MS =40M, M He =16M, E 51 =30 M BH at the explosion ~ 5M Black hole formation with a Hypernova explosion. Podsiadlowski et al. 2002
23
The properties of hypernova explosions High velocity material (Fe) Low velocity & high density material (O) –Contrary to conventional spherical models. forms a black hole, but explodes with large E 51 (= E/10 51 ergs > 10). –Black hole formation does not always leads to a failed supernova. Do jet-induced explosions satisfy these conditions?
24
16M He (M MS =40), 8M He (M MS =25), (Nomoto&Hashimoto 1988) M Rem0 1.0 – 3.0M E jet = Mc 2, 0.01 Model: Jet-induced Explosion Newtonian Gravity Radiation + Pairs 15 o Postprocessing 222 isotopes (Tielemann et al.) K. Maeda, in preparation
25
Hydrodynamics Collimated jets (Z) + Bow shock (All direction) M Lateral expansion Radial Velocity/cLog (Density[g cm -3 ]) R/10 10 cm
26
Hydrodynamics (Center) Accretion from the side Continue to accrete, M BH Radial VelocityDensity R/10 10 cm
27
0.7 s 1.5 s E 51 =11, M BH (final)=5.9M, M( 56 Ni)=0.11M Outflow Inflow R/10 10 cm
28
Density Distribution Jet (z) (E 51 =11) Jet (R) Sph (E 51 =10) Sph (E 51 =1) High density core at the central region High velocity material along z
29
Growth of a central remnant Time (sec) M BH 20400 4 8 Inefficient Jet efficient Jet M REM can be ~ 5 – 10M , starting from 1.5 – 3M . Still a strong explosion follows (E 51 >10). A hypernova with a stellar mass black hole (X-ray Novasco; Large Si,S with black hole formation).
30
Final Remnants’ masses and Kinetic Energies A more massive star makes a more energetic explosion (As seen in ‘Hypernova Branch’). 11 6.9 1.9 5.9 E 51 =E/10 51 ergs M BH (M )
31
Peak Temperature & Density High T + Low Material are preferentially ejected. R Z R Z Ejected Accreted T/10 9 K 0 4 8 Log(Density[g cm -3 ]) 864 Spherical EjectedAccreted
32
High Velocity Fe Low Velocity O 6 4 2 0 246 Vz (/10 9 cm s -1 ) 0.5 0.1 0.01 E 51 (=E/10 51 ergs)=10, M REM =6M , M( 56 Ni)=0.1M 16 O 56 Ni( 56 Fe) Fe, O Distribution Vr
33
Relation in M REM and M( 56 Ni) (M ) L Optical Efficient e.g., rotation inefficient 40M 20M GW:
34
Fe Mn O Zn Velocity Inversion of isotopes V(Fe) > V(O), V(Zn) > V(Mn) Spherical; Zn Fe Mn O T, Inner (smaller V) Ejection of heavier isotopes with higher V Prediction
35
Jet (Z)Jet (R) Spherical Jet (all direction) OFe and heavier
36
Spherical, 10 52 ergs, 0.1M Ni Jet-Driven , 10 52 ergs, 0.1M Ni O, Mg Mn Co , Zn Abundances in the whole ejecta
37
Possible Contribution to the early Galactic Chemical Evolution Jet model: [Zn/Fe],[Mn/Fe] Agrees with the abundances in old stars. Past [X/Y] = log(X/Y) – log(X/Y) More Massive Star
38
-1 -0.5 0 [S/Si] -0.6 -0.4 -0.2 0 [Si/O] 40M 25M M BH /M 0 1 2 3 0 5 10 56 Ni S Si O Accretion Sph Jet Accretion [S/Si],[Si/O]
39
0 5 10 0 1 2 3 M BH /M -0.2 0 0.2 0.4 -1.4 -1.2 -1 -0.8 40M 25M [Mg/O] [C/O] O,Mg C Accretion Sph Jet Accretion [Mg/O],[C/O]
40
Summary The studies on hypernovae indicate; –Velocity inversion of Fe and O –Dense core –Black hole formation Jet-induced explosions satisfy the above condition! –Blow up heavy isotopes (e.g., Fe, Zn) to the surface. –A black hole grows, with an energetic explosion. Possible site of gravitational wave emission? Depending on angular momentum, HNe may be able to be detected more easily than normal SNe. –M BH efficiency of the jets (e.g., rotation?) –M BH ( inefficient Jets) L Opt –M BH Abundances (e.g., M BH [S/Si], [O/C] )
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.