Download presentation
Presentation is loading. Please wait.
1
Double Beta Decay review
Fabrice Piquemal CENBG, University Bordeaux 1 CNRS/IN2P3 and Laboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) Thanks to: G. Gratta, S. Elliot, A. Giuliani, S. Schoenert, T. Kishimito, M. Nomachi, K. Zuber, M. Chen F. Piquemal (CENBG) LP07
2
Double Beta decay: physics case
- Leptonic number violation - Nature of neutrino : Dirac (n n) or Majorana (n =n) - Absolute neutrino mass and neutrino mass hierarchy Right-handed current interaction CP violation in leptonic sector Search of Supersymmetry and new particles
3
Accelerators (K2K,Minos)
Neutrino properties Oscillations Atmospheric (SK) Accelerators (K2K,Minos) Reactors (CHOOZ) Accelerators (JPARC) Solar (SNO, SK) Reactors (KamLAND) U ,b : CP Majorana phase tan223=1.0 ± sin2213 < tan212=0.39 ± 0.05 CP= CP Dirac phase m2atm = m231 = (2.3 0.2 ) 10-3 eV2 m2sol = m212 = (7.9 0.3) 10-5 eV2
4
Neutrino mass Absolute mass ? Beta decay mv = S |Uei| mi <2.3 eV
1/2 2 2 Beta decay mv = S |Uei| mi <2.3 eV Double beta decay |<mn>| = |SUei mi| < eV Cosmology mi = m1+m2+m3 <~1 eV 2 m2 m12 m22 m32 Degenerate m1≈m2≈m3» |mi-mj| Normal hierarchy m3>>> m2~m1 Inverted hierarchy m2~m1>>m3 ? Mass hierarchy ?
5
Double Beta decays bb(2n) bb(0n) e- e- e- e- n n DL =2 bb
Single beta decay forbidden (energy) or strongly suppressed by large angular momentum change Decay to ground state or excited states bb bb bb(2n) bb(0n) e- e- e- e- n n DL =2 2nd order process of weak interaction Already observed for several nuclei bb(0n) Majorana neutrino (n=n)
6
Neutrinoless Double Beta decay
(A,Z) (A,Z+2) + 2 e- Discovery implies DL=2 and Majorana neutrino Process: parameters Light neutrino exchange <mn> (V+A) current <mn>,<l>,<h> Majoron emission <gM> SUSY l’111,l’113l’131,….. R-parity violation T1/2 depends on (l’111)2, gluino and squarks mass T1/2= F(Qbb,Z) |M|2 <mn>2 -1 Phase space factor Nuclear matrix element Effective mass: <mn>= m1|Ue1|2 + m2|Ue2|2.eia1 + m3|Ue3|2.eia2 |Uei|: mixing matrix element a1 et a2: Majorana phase 5 T1/2= F |MJ|2 <gM>2 -1 Phase space factor Nuclear matrix element Coupling between Majoron and neutrinos
7
bb(0n) observables From G. Gratta
8
bb(0n) observables Light neutrino exchange V+A current
Minimum electron energy MeV MeV Angular distribution betwen the 2 electrons Cosq Cosq
9
Effective neutrino mass and neutrino oscillations
Inverted hierarchy Normal hierarchy Degenerated Degenerate: can be tested Inverted hierarchy: tested by the next generation of bb experiment <mn> in eV Normal hierarchy: inaccessible
10
Isotopic abundance (%)
bb emitters Isotope Q (MeV) Isotopic abundance (%) G0(yr-1) x 1025 48Ca 4.271 0.187 2.44 76Ge 2.040 7.8 0.24 82Se 2.995 9.2 1.08 96Zr 3.350 2.8 2.24 100Mo 3.034 9.6 1.75 116Cd 2.802 7.5 1.89 130Te 2.528 33.8 1.70 136Xe 2.479 8.9 1.81 150Nd 3.367 5.6 8.00
11
Nuclear matrix elements
5 T1/2= F(Qbb,Z) |M0n|2 <mn>2 -1 Nuclear matrix elements are calculated using various models: QRPA (RQRPA, SQRPA, …….) Shell model Up to recently no convergence for the results Statement from Bahcall et al. to use the nuclear matrix range as an uncerntainty: « Democratic approach » Does not take into account the improvements of the Models Exchanges between groups to understand discrepencies and to evaluate errors bb(2n) is used by QRPA to fix gpp paramaters for QRPA
12
Nuclear matrix elements
Shell Model (Poves et al) - QRPA Two different QRPA calculations A lot of improvements have been done but still discrepancies Uncertainties for extraction of <mn> In the following, « latest NME » will refer to these Nuclear Matrix Elements
13
View of the field: present and future
Today experiments have a mass of enriched source ~10 kg To reject inverted hierarchy mass scenario, enriched source mass 1 ton All projects have this goal but it is unrealistic to plane to go directly from 10 kg to 1 ton scale (understanding and control of the background) Intermediate step at 100 kg scale is needed (as proposed by each project) Talk focuses on the running experiments, on some 100 kg scale projects starting within 5 years and R&D projects.
14
(Loaded) Scintillator
Experimental techniques With background: M: masse (g) e : efficiency KC.L.: Confidence level N: Avogadro number t: time (y) NBckg: Background events (keV-1.g-1.y-1) DE: energy resolution (keV) > e A M . t NBckg . DE ln2 . N kC.L. (y) Today, no technique able to optimize all the parameters Calorimeter Semi-conductors Source = detector Calorimeter (Loaded) Scintillator Source = detector Tracko-calo Source detector Xe TPC Source = detector b b b b b b b b e, DE e, M NBckg, isotope choice e,M, (NBckg) F. Piquemal (CENBG) LP07
15
Calorimeter vs Tracko-calo
High energy resolution Modest background rejection High background rejection Modest energy resolution bb(0n) bb(0n) keV bb(0n) bb(0n) keV MeV
16
Qbb and background components
Natural radioactivity (40K, 60Co,234mPa, external 214Bi and 208Tl…) 214Bi and Radon 208Tl (2.6 MeV g line) and Thoron g from (n,g) reaction and muons bremstrahlung + more specific background for calorimeter Surface or bulk contamination in a emitters cosmogenic production 150Nd 96Zr 100Mo 82Se 130Te 76Ge 48Ca 76Xe 3 4 5 2 Qbb MeV + bb(2n) for tracko-calo or calorimeter with modest energy resolution
17
bb(0n) search is a very dynamic field
Experiments Isotopes Techniques Main caracteristics NEMO3 100Mo,82Se Tracking + calorimeter Bckg rejection, isotope choice SuperNEMO 82Se, 150Nd Cuoricino 130Te Bolometers Energy resolution, efficiency CUORE GERDA 76Ge Ge diodes Energy resolution, eficiency Majorana COBRA 130Te, 116Cd ZnCdTe semi-conductors EXO 136Xe TPC ionisation + scintillation Mass, efficiency, final state signature MOON 100Mo Compactness, Bckg rejection CANDLES 48Ca CaF2 scintillating crystals Efficiency, Background SNO++ 150Nd Nd loaded liquid scintillator Mass, efficiency XMASS Liquid Xe CARVEL CaWO4 scintillating crystals Yangyang 124Sn Sn loaded liquid scintillator DCBA Gazeous TPC Bckg rejection, efficiency
18
bb(0n): Present situation
Ge diode detectors: High energy resolution and efficiency But poor background rejection (pulse shape analysis) Heidelberg-Moscow (2001) ~11 kg of enriched 76Ge (86%) IGEX (2002) ~ 8.4 kg of enriched 76Ge (86%) 35.5 k.yr 8.9 kg.yr without PSA 4.6 kg.y with PSA 0.06 cts/keV/kg/yr T 1/2 > yr (90% CL) T 1/2 > yr (90% CL) <mn> < eV (90% CL) <mn> < eV (90% CL) Eur. Phys. J., A 12 (2001) 147 Phys. Rev. D65 (2002)
19
bb(0n) signal ? HM claim 2006: Improvement of PSA (6s) 2004 (4s)
+0.44 T1/2 = yr T1/2 = (0.69 – 4.18) 1025 <mn> = (90%) -0.31 <mn> = 0.32 ± eV
20
Ge detector improvements
Strategies: Ge detectors in liquid nitrogen to remove materials Active shielding and segmentation of detectors to reject gamma-rays e- detector segments Liquid argon scintillation crystal anti-coincidence Detector segmentation pulse shape analysis R&D: liquid argon anti-coincidence
21
GERDA (Germany, Italy, Belgium, Russia) Removal of matter
Use of liquid nitrogen or argon for active shielding Segmentation Improvement of Pulse Shape Analysis PHASE I: 17.9 kg of enriched 76Ge (from HM and IGEX) In 1 year of data if B=10-2 cts/keV/kg/yr (check of Klapdor’s claim) Start 2009 at Gran Sasso, results T1/2 > yr <mn> < 250 meV PHASE II: 40 kg of enriched 76Ge (20 kg segmented) if B=10-3 cts/keV/kg/an T1/2 > yr in 3 years of data <mn> < 110 meV PHASE III: if PHASE I and II succeed 1 ton if B=10-3 cts/keV/kg/yr T1/2 > yr in 3 years of data <mn> < 20 meV
22
Majorana Goal 500 kg of 76Ge (modules of 60 kg) Very pure material
(USA, Russia, Japan) Very pure material (Electroformed cooper) Segmentation PSD improvement Deep underground Goal 500 kg of 76Ge (modules of 60 kg) R&D phase kg of 86% enriched 76Ge crystals Some of the crystals segmented Bckg goal ~ 1 count/ROI/t-yr (after analysis cuts) 30 kg of enriched Ge, running 3 yr. Data taking scheduled for 2011 T1/2 > yr <mn> < 140 meV (could confirme or refute Klapdor’s claim) Collaboration with Gerda for 1 ton detector
23
Cuoricino Bolometers of TeO2 (Qbb= 2.528 MeV) Heat sink
Bolomètres: CUORICINO Bolometers of TeO2 (Qbb= MeV) Heat sink Signal:∆T = E/C Thermometer Double beta decay Crystal absorber High energy resolution 5-7 keV (FWHM) Natural abundance for 130Te: 34% High efficiency: 86% But no electron identification Background from internal and surface contamination in a emitters 214Bi (238U chain) 208Tl (232Th chain) 60Co pile up 5.3 kg.an T1/2 > ans (90%) <mn> <0.5 – 2.4 eV bb(0n) Energy (keV) 10.4 kg of 130Te Running at Gran Sasso since 2003 F. Piquemal (CENBG) LP07
24
Cuoricino results 0DBD 11.83 kg.yr
Gamma region, dominated by gamma and beta events, 0DBD Alpha region, dominated by alpha peaks (internal or surface contaminations) Bckg: 0.18 cts/keV/kg/yr 60Co pile up 130Te 0vBB 11.83 kg.yr Energy (keV) T1/2 > yr (90% CL) <mn> < 0.2 – 1 eV (90% CL) Expected final sensitivity ~2009: T1/2 > yr <mn> < 0.1 – 0.7 eV
25
Array of 988 TeO2 5x5x5 cm3 crystals
CUORE (Italy, USA,Spain) 750 kg of TeO2 kg of 130Te Array of 988 TeO2 5x5x5 cm3 crystals Improvement of surface event rejection Goal :Nbckg=0.01 cts.keV-1.kg-1.yr-1 (Factor 20 compared to Cuoricino) Data taking foreseen in 2011 (R&D on other bolometers like 116CdWO4) Expected sensitivities (5 years of data) Nbckg=0.01 cts.keV-1.kg-1.yr-1 T½ > yr <mn> < 0.03 – 0.17 eV Nbckg=0.001 cts.keV-1.kg-1.yr-1 T½ > yr <mn> < – 0.1 eV F. Piquemal (CENBG) LP07
26
NEMO 3 Tracko-calo detector e- e- bb events
(France, UK, Russia, Spain, USA, Japan, Czech Republic,Ukraine, Finland) Tracko-calo detector Central source foil (~50 mm thickness) Tracking detector (6180 drift cells) t = 0,5 cm, z = 1 cm ( vertex ) Calorimeter (1940 plastic scintillators + PMTs) Efficiency 8 % Running at Modane Underground lab since 2003 E1 e- Vertex Multi-isotopes (7 kg of 100Mo, 1 kg of 82Se,…) Identification of electrons Very good bckg rejection (< 10-3 cts/keV/kg/yr) Angular distribution and single electron energy (necessary to distinguish the mechanism in case of discovery) But modest energy resolution and efficiency e- E1+E2= 2088 keV t= 0.22 ns (vertex) = 2.1 mm E2 bb events F. Piquemal (CENBG) LP07
27
NEMO3: bb(0n) results 100Mo Phase I, High radon 7.6 kg.yr Phase II, Low radon 5.7 kg.yr Phase I + II 13.3 kg.yr Number of events / 40 keV Number of events / 40 keV Number of events / 40 keV [ ] MeV: e(bb0n) = 8 % Expected bkg = 8.1 events Nobserved = 7 events [ ] MeV: e(bb0n) = 8 % Expected bkg = 3.0 events Nobserved = 4 events [ ] MeV: e(bb0n) = 8 % Expected bkg = 11.1 events Nobserved = 11 events Phases I + II T1/2(bb0n) > yr (90 % C.L.) <mn> < 0.6 – 1.3 eV T1/2(bb0n) > yr (90 % CL) <mn> < 0.3 –0.7 eV Expected in 2009
28
SuperNEMO project Tracko-calo with 100 kg of 82Se or 150Nd
(France, UK, Russia, Spain, USA, Japan, Czech Republic,Ukraine, Finland) Tracko-calo with 100 kg of 82Se or 150Nd (possibility to produce 150Nd with the French AVLIS facility) T½ > yr <mn> < 0.05 – 0.09 eV Modules based on the NEMO3 principle Measurements of energy sum, angular distribution and individual electron energy 3 years R&D program: improvement of energy resolution Increase of efficiency Background reduction ……. 100 kg 20 modules R&D funded by France, UK and Spain 2009: TDR 2011: commissioning and data taking of first modules in Canfranc (Spain) 2013: Full detector running
29
EXO Liquid Xe TPC Energy measurement by ionization + scintillation
(USA, Canada, Switzerland, Russia) Liquid Xe TPC Energy measurement by ionization + scintillation Tagging of Baryum ion (136Xe 136Ba e-) Large mass of Xe Identification of final state background rejection But no e- identification Poor background rejection without Ba ion tagging R&D for Ba ion tagging in progress Prototype EXO-200 200 kg of 136Xe, no Ba ion tagging Installation in progress in WIPP underground lab 2007 Could measure bb(2n) of 136Xe EXO 200 (2 years) T½ > yr (90% CL) <mn> < eV
30
CANDLES (Japan) Pure CaF2 crystals Wave length shifter in LS
PSD to reject g and a CaF2(Pure) Liquid Scintillator (Veto Counter) Buffer Oil Large PMT Efficiency, 48Ca (background) But mass of isotope, no e- identification CANDLES III : Prototype 103 cm3 × 60 crystals kg (~ 350g of 48Ca) In test in Osaka University Full detector 103 cm3 × 96 crystals kg Installation in spring 2008 at Kamioka Expected BG: 0.14 event/yr (30 mBq/kg) <mn> ~0.5 eV CANDLES IV : 3 tons of CaF2 (3 mBq/kg) 6 yr <mn> ~0.1 eV
31
MOON Compact tracko-calo Compactness Multi-isotopes
(Japan, USA) Compact tracko-calo Compactness Multi-isotopes Electron identification But energy resolution and bckg rejection (ToF) Moon 1: Data acquisition with 142 g of 100Mo (40 mg/cm2) In progress: Improvement energy resolution Waveform readout Design of a module Module: kg of bb source <m> ~100 meV
32
DCBA (Japan) Drift Chamber beta-ray Analyser Electron identification
Multi-isotopes But Efficiency, Energy resolution Prototype with 207Bi : 10% (FWHM) energy resolution X position s= 0.5 mm Y position s= 0.02 mm X position s= 6 mm
33
COBRA Good energy resolution Several isotopes at the same time
(UK, Germany, Italy, poland, Slovaquia, Finland, USA) Array of 1cm3 CdZnTe detectors Good energy resolution Several isotopes at the same time Efficiency But background rejection 4x4x4 detector array = 0.42 kg CdZnTe Installed at LNGS Test of coincidence rejection Measure of 113Cd Cd-113 beta decay with half-life of about 1016 yrs F. Piquemal (CENBG) LP07
34
SNO++ Scintillator loaded with Nd. Mass Efficiency
But energy resolution No e- identification Test of light attenuation Study of Nd purification (factor 1000 per pass in Th and Ra) 56 kg of 150Nd (0,1 % of natural Nd) 4 yr of data <mn> ~80 meV 500 kg of 150Nd 4yr <mn> ~30 meV 500 kg of 150Nd 1 year <mn> = 150 meV only internal Th and 8B solar neutrino backgrounds are important Similar prospect in KamLAND F. Piquemal (CENBG) LP07
35
Enriched isotope mass (kg)
Summary Summary Experiment Isotope Enriched isotope mass (kg) T1/2 (yr) <mn> (eV) Start Status CUORE 130Te 203 * 2011 Funded GERDA phase I phase II 76Ge 17.9 40 0.2 – 0.5* 0.07 – 0.2* 2009 Majorana 1.1026 0.1 – 0.3* EXO-200 136Xe 200 * 2008 SuperNEMO 82Se 150Nd 100 1026 * 0.07 R&D CANDLES 48Ca 0.5 ~0.5 MOON II 100Mo 120 0.09 – 0.13 ? DCBA 20 SNO++ 500 0.03 COBRA 116Cd, 420 * Calculation with NME from Rodim et al., Suhonen et al., Caurier et al. PMN07
36
<mn> current and future limits
. HM Cuoricino NEMO3 Klapdor claim Limits in 2009 HM,NEMO3, Inverted hierarchy Normal hierarchy Degenerated Expected limits 2009 – 2015 CUORE,GERDA, Majorana, SuperNEMO, EXO,…. Use of « latest NME » for all experiments
37
Summary Summary Very active field. A claim to be checked
Current experiments will reach a sensitivity on <mn> ~(0.2 – 0.7) eV in 2009 Need to measure several nucleus with different techniques (only tracko-calo could distinguish the mechanism in case of discovery) Next generation ~ source mass 100 – 200 kg <mn> ~ (0.03 – 0.1) eV Will cover partially the inverted hierarchy mass scenario (2011 – 2015) Essential step for 1 ton scale experiment ( background considerations) Need improvements for Nuclear Matrix Element calculations
38
bb(0n): Present situation
Pulse shape analysis with Ge detectors SSE (Multiple Site Event) (Single Site Event) SSE MSE F. Piquemal (CENBG) LP07
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.