Download presentation
Presentation is loading. Please wait.
1
Neuron Models Math 451 Final Project April 29, 2002 Randy Voland
2
Neuron Structure Cell Body Dendrites Synapses on Cell Body and Dendrites (Input) Axon and Axon Branches (Output) Source: www.millennium.berkeley.edu/ ganglia/images/neuron.gifSource: www.gsu.edu/~wwwbgs/bgsa/ neuro/40x%20neuron.JPG
3
Nerve Impulse Generation Source:www.biology.eku.edu/RITCHISO/ nervous_depolarization.gifSource:www.biology.eku.edu/RITCHISO/ nervous_repolarization.gif Source: http://faculty.washington.edu/chudler/ap3.gif
4
Hodgkin-Huxley Neuron Model Studied giant squid axons –Electrical stimulation –Measurements of ion currents Mathematical model of action potential –Equivalent electric circuit of transmembrane processes –Four first order differential equations Voltage rate of change Rate of change of Na and K ion conductance
5
Hodgkin-Huxley Neuron Model dv/dt = (-1/c)*[g Na *m 3 *h*(v-v Na )+g K *n 4 *(v-v K )+g L *(v-v L )] dn/dt = α n (v)*(1-n)- β n (v)*n dm/dt = α m (v)*(1-m)- β m (v)*m dh/dt = α h (v)*(1-h)- β h (v)*h Sodium (Na +) Ion Conductance Potassium (K +) Ion Conductance
6
Hodgkin-Huxley Neuron Model c=1.0 g Na =120.0 g K =36.0 g L =0.3 v Na =-115.0 v K =12.0 v L =-10.5989 α n = 0.01*(v+10)/(exp((v+10)/10)-1) α m = 0.1*(v+25)/(exp((v+25)/10)-1) α h = 0.07*exp(v/20) β n = 0.125*exp(v/80) β m = 4*exp(v/18) β h = 1/(exp((v+30)/10)+1)
7
Variation in Ion Conductance H-H Model vs. Nerve Source: http://courses.washington.edu/biophys/homework/hw6_files/image003.jpg
8
Action Potential H-H Model vs. Nerve Source: http://courses.washington.edu/biophys/homework/hw6_files/image003.jpg
9
H-H Model in the v, m Phase Plane 1 1 2 2 3 3 3 4 4 4 0 0 0
10
Fitzhugh’s Reduced H-H Model in the v, m Phase Plane
11
Fitzhugh-Nagumo Neuron Model Low Stimulation
12
Fitzhugh-Nagumo Neuron Model Moderate Stimulation – Limit Cycle
13
Fitzhugh-Nagumo Neuron Model Moderate Stimulation - Bursting
14
Fitzhugh-Nagumo Neuron Model High Stimulation – No Recovery
15
Summary Hodgkin-Huxley Model –Models physical processes –Complex Fitzhugh-Nagumo Model –Simpler/less physical –Models neuron bursting Many other models in literature many based on Hodgkin-Huxley or Fitzhugh-Nagumo
16
Further Reading Edelstein-Keshet, E. (1988) Mathematical Models in Biology, McGraw-Hill, 311-341. Hodgkin, A.L. and Huxley, A.F. (1952) J. Physiol., 117, 500 – 544. Fitzhugh, R. (1960) J. Gen. Physiol., 43, 867-896. Fitzhugh, R. (1961) Biophys. J., 1, 445-466. Feng, J. (2001) Neural Networks, 14, 955-975.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.