Presentation is loading. Please wait.

Presentation is loading. Please wait.

MOON Double beta decays for neutrinos and dark matter Hiro Ejiri Osaka /JASRI /ICU I. Neutrino studies by  and  II. MOON detector and MOON 1 for.

Similar presentations


Presentation on theme: "MOON Double beta decays for neutrinos and dark matter Hiro Ejiri Osaka /JASRI /ICU I. Neutrino studies by  and  II. MOON detector and MOON 1 for."— Presentation transcript:

1 MOON Double beta decays for neutrinos and dark matter Hiro Ejiri Osaka /JASRI /ICU I. Neutrino studies by  and  II. MOON detector and MOON 1 for  III. Dark matter WIMP’s by MOON IV. Comcluding remarks. Erice 05 Sep. 2005. Neutrinos in cosmology and astro particle nucl. Phys.

2 I.Neutrino studies by  and MOON Neutrino study in nuclear micro laboratories 1. Nuclei, being consist of nucleons in quantum states, are excellent micro-laboratories to study fundamental particles & interactions.  2  decays in nuclei, where -exchange between 2 n is enhanced by 10 7, and  BG single  is forbidden, are used to study the nature and the absolute mass.  3. Inverse  decays by astro- ’s are used to study low-enrgy astro- ’s. nuclear responses are crucial for study in nuclei. H. Ejiri, studies in nuclei. Phys. Rep. 338 2000 265 

3 Neutrino studies by  decays A. Faessler abd F. Simcovic J. Phys. G24 98 2139 S.R.Elliott and P. Vogel Ann Rev. Nucl. Part. Sci. 52 02 115 H. Ejiri, Invited Review  and   JPSJ 74, 2101, Aug.05. 2   L=0 T  = G  |M  | 2 M  =M(  ) 0  L=2 T  = G 0n |M  | 2 | | 2 RHC, SUSY, Majoron, Majorana effective mass =  k i exp(i  i ) m i is expressed by using k i  m s,  m a given by oscillations

4  &  masses  exps. With I. 0.1~ 0.2 eV QD, m 1 > 0.1 eV II. 20 ~ 30 meV give the mass spectrum and m 1 in case of IH III. 1~ 2 meV give mass spectrum in case of NH and m 1 Note s 2 = sin  13 is crucial for NH. 2

5 Energy and angular correlations of 0  rays H. Ejiri, Phys. Rep. 338 2000 265

6 MOON objectives and Unique features A.  decay spectroscopy with m ~30 meV. B. Charged current 7 Be solar e flux within 10%. 1. Large Q = 3.034 MeV leads to the large  phase space and large signals well above most RI BG. 2. Excited 0+ by , less BG’s of , RI. 3.  angular correlations to identify the m term. 4. Localization in space and time to select signals and reject BG 5. Multi-use with other  nuclei as 82 Se, 150 Nd etc and solar  MOON : Mo Observatory Of Neutrinos can be Multi-use Observatory Of . H.Ejiri, H.Robertson, et al. PRL, 85, 2917; H.Ejiri, J. Engel, et al., PL B 530, 27

7 100 Mo: Large Q value, large phase volume G, and large transition rate T. Ground and excited 0+ states in 76 Ge, 82 Se, 100 Mo, and 136 Xe QRPA matrix elements by Simkovic et al ‘04

8 MOON sensitivity Signal T = S N m 2 : S N ~ 1.3 10 -24 / (eV) 2 with M 0 ~3, Y   with signal efficiency of  0.3 is 6 per ton year for 50 meV 2  peak requires Y 0 > 2 (BG) 1/2, BG = Y 2 ~ 8 t y (  / 3%) 6 Energy resolution  =3%(FWHM7 %)  = 2,3 % 5 t y with  = 3% (FWHM7 %) gives 35 meV  = 2,3 %(FWHM 5 %) 19 meV

9   for excited 0 + depend on 0  mechanisms, light, heavy, SUSY. Simkovic, Faessler et al. Good exp. with good M  ratios for the g & excited 0 + clarifies the process. T = S N m 2

10 Unique features for solar 1. Large CC rates with low E th 2. GS: pp- and 7 Be-, B(GT) from EC. 3. Real time studies of CC 4. The two  (charged particles) coincidence to localize signals in space & time to cut RI,  BG..

11 II. MOON detector and MOON 1

12  spectrum for 10 t y 100 Mo with  ~3%  eV    0.05 eV III. MOON R&D Key elements for IH-L 25 meV 1/m = k M  (N   BG) 1/4 A. M  nuclear matrix element ? B. Signal rate ? 100 Mo N  ~ 0.5 -1 ton ? C. BG per Mo ton 1. BG in  = 2  / E-resolution ? BG ~ [10 / ton year ] (  / 3%) 6 2. BG in solar  is accidental   Position resolution order of 10 -9 ton = mg 3. RI-BG rates: RI impurity ? Modest 10 m Bq/ton leads to negligible RI-BG

13 MOON signal selection and RI-BG rejection by localization of signals in 4-dimentional space-time in detector MOON: multi-layer modules with good position resolution 10 -8 are excellent self-shielded detectors by requiring anti-coincidence with each other. Tracking detector for two  -ray correlation study. Option 1. Multi-layer PL scintillators with multi-PM and fiber for positions. Option 2. Liq. Ar with multi-wires for position read-out. UW A. SSSC :Signal Selection by Spatial Correlation rejects most  BG’s, which are associated with  rays. B. SSTC :Signal Selection by Tim Correlation rejects most  BG’s, which are associated with pre- and/or post decay. s T   

14 SSTC Signal Selection by Time Correlation B S Single site for  2 sites within 30 sec for solar  followed by  Time correlated pre- and post decay signals, B’ and B’’. Time window T ’ < < event interval / unit cell detector: H.Ejiri, Czechoslovak Journal Physics 54 (2004) Suppl. MEDEX Proc. Time coordinate T T’  T’ B’ B B’’  ’  ”

15 MOON detector concept  o film Scintillator plate 6 mm Fiber XY A Supermodule of Mo films and fiber/plate scintillators*. 1. Position read-out by fibers with 4 mm - 0.4 mm 2. Energy read-out by  plate scintillators with E resolution  ~ 2.5 % including the Mo film (20 mg / cm 2). 3. Modest volume with enriched Mo and modest cost of MPA / PM 4. Enriched 100 Mo 0.5~ 1 ton by centrifugal separation of MoF 6 gas 5. Detector / 100 Mo ratio in a module is ~ 8 mm / 20 mg = 40. One unit: 100 Mo 0.1 ton is 4 ton PL (XYZ =1.4 m 1.4 m 2m). B.Liq.Ar with Mo film UW. Ionizations and lights give better E resolutin Fiber XY plane One module

16 MOON Plastic fiber-Mo Ensemble Scintilation Fiber Mo 0.02g/cm 2 2 sets of x- y fiber planes Mo(20mg) Plate scintillator

17 R&D C. BG rate / E resolution C1. BG(2  )/t y ~ 10 (  /3 %) 6 Goal : Energy Resolution  ~ 2-3 %(FWHM ~ 5-7 %) CIA. Test of a small PL with 207 Bi conversion electrons PL (0.06 m 0.06 m 0.01 m) 207 Bi 1048 keV 207 Bi 976 keV 8.9%(FWHM) ADC-Channel Counts/Time Measured values are Np=10K photons / MeV, Q E =24% photo-electron efficiency, T = 78% photon collection efficiency, Ne= 1830 photo-electrons / MeV. Statistical  = 2.3 %. Non-stat.  = 3 % Over-all  = 3.8 %(FWHM8.9 %)@975keV  =3.6 % @  1 =1.5 MeV if non-stat remains constant 3 %  = 2.5 % ( FWHM 6 %) @ 3 MeV 1.3 % stat. and 2 % non-stat.

18 CI Test of medium size PL with 0.53 m 0.53m 0.01 m. Left/right photon yield ratio gives position. 2.5 % / 20 cm can be corrected with 2 cm Medium PL (0.53 m 0.53 m 0.01 m) with 32 Hamamatsu 60 mm sq. R6236-01 PM N=10 K / MeV, T = 65 %, QE=30 %.  ~ 3% (FWHM 7% ) @ 3MeV with  ~1.35 % stat., ~2.7% non-stat. 2 % is realistic with 1.35 % stat., 1.5 % non-stat.  ~ 4.5 % (FWHM 11%) @1MeV

19 MOON 1 Proto type MOON in operation since April 2005 Plate sintillator ensemble inside the ELEGANT V Pb-Cu NaI shield 6-layers of PL 53×53×1cm 3 Mo-Foil 160g @20mg/cm 2 ×2 Side View 2-PL Energy sum spectrum Test run 0 count per 0.5 kg keV year

20 Oto Cosmo Observatory Unused tunnel 1400 m we Cosmic  4 10 -3 /m 2 /s Neutron 4 10 -1 /m 2 /s Rn 10 Bq/m 3 Lab.IILab.I Nishiyoshino Oto To Osaka ELEGANT VI Double beta decays of 48 Ca and dark matter ELEGANT V Double beta decays of 100 Mo and dark matter 60 km south of Osaka, near Int. Airport

21 Double layer hit event :  Event selection Signals from PL3 and PL 4 No signals from other PL’s No signals from NaI. ROI (Region Of Interest) keV At the ROI of 2.7-3.2MeV, 60 gr 100 Mo 0 counts for 11 days. PMT3 PMT4 PMT6 PMT5 PMT2 PMT1 Selected layer counts/50keV/year Each PMT combination is PMT1,6<200keV, PMT2,5>200keV, PMT3,4>500keV 0 / 500 keV / 60 gr / 11 days ~ 0 / keV / kg / year H. Nakamura et al.,

22 Nuclear matrix element T 1/2 y m(BC) eV m(DEF) eV MOON 1.6 10 27 0.015-0.018 0.043-0.047 B:Rodin-03 QRPA, C:Rodin-03 RQRPA, D:Simkovis01 QRPA E:Suhonen02 QRPA F:Faessler98 RQRPA

23 Nuclear response M 2n for  LSD (Low-lying State Dominance) H. Ejiri  PR 338 02 low-lying matrix elements with effective g A derived from exps. Frekers ; Charge exchange reactions    S  S  S H.Ejiri, PR 338, 265, JPSJ 65 ’96 7. GR cancels because G includes S with + sign and S includes G with - sign

24 Nuclear Responses (M 0 ) for  H. Ejiri, PR 338 263 Single ( 3 He,t, t, 3 He) and double CE ( 11 B, 11 Li) at RCNP

25 Charge exchange reactions with medium energy hadrons. RCNP Osaka Univ. High E-resolution analyzer  E ~ 50 keV for 0.5 GeV : 10 -4 -responses for low lying state

26 Double charge exchange spin-flip reaction ( 11 B, 11 Li) ~ (     ) K. Takahisa, H.Ejiri, et al RCNP 0.76 GeV 13 C( 11 B, 11 Li) 13 O

27 Photons : Neutral & charged weak currents  z=6,6  z=5,5 ,Tz=5,4  z=4,4     S  + A = A’ for + A = + A’,  = g /e = g /e (2T) 1/2 H. Ejiri, PRL 21 ’68, H. Ejiri, PR 38 ‘78 T,Tz = 6,6 LEPS Laser Electron Photon Sources give pol. GeV-MeV  for E/M. HIGS High Intensity  Source (Duke) 2~5 MeV  by 0.3 ~ 4 GeV e Spring-8 Multi-GeV-MeV from 8-1.5 GeV electrons.

28 R&D B. Enriched 100 Mo isotopes VNIIEF is ready to produce 1 Kg immediately, and 0.1 t / y soon. Rate 0.5 t 100 Mo(90 %) / 5 y with 6 K centrifuges and 40 processes.

29 III. Dark matter WIMP’s search by MOON (Multi-module Observatory Of Neutralinos)

30 Dark matter WIMP’s (Neutralinos) detection Dark energy 65%, DM 30 %, baryonic matter 5 %. DM : mainly of cold DM WIMP’s : LSP Lightest SUSY Particle. Detection of WIMP’s is extremely hard. Cross sections – fluxes (event rates) are small.  (coherent) = A 2 Energy signals of recoil nuclei are low and smooth as BG/noise. Recoil E ~ 50-100 keV. Detected E ~ 2-5 KeV with quenching. Annular modulation of E-spectra : Small ( % order) and subject to annular BG modulation. MOON Multi-Modular Observatory Of Neutrinos Multi-layer NaI plates with ~300  m in thickness. A. Nuclear inelastic . B. Atomic electrons & X-rays with nuclear recoils

31 A. Nuclear inelastic . H.Ejiri, K. Fushimi, H. Ohsumi, Phys. Lette. B317 1993 14 J.D. Vergados, P. Quentin, D. Strottmann, hep-ph/041151. 1. Larger signals~ 50 keV than quenched recoil signals 2. Sharp peak at E  =57 keV in case of 127 I. 3. Incoherent and thus smaller cross-section. Spin-coupled DM

32 Muliti-layers of thin NaI plate modules K. Fushimi et al Tokushima Osaka NaI 500  m x 50 mm x 5 mm LG 500  m x 60 mm x 60 mm ESR reflector 16 modules (phase 1 present) 256 modules (phase 2) Sensitivity ~ 1 GeV /cc one order improvement. 57 keV  efficiency at n+1 th NaI when recoil at n th NaI

33 K and L X-rays from LSP-nuclear interaction H. Ejiri, Ch. C. Moustakidis, J.D. Vergados, 2005. Ch. C. Moustakidis, J.D. Vergados, H. Ejiri, Nucl. Phys. 2005, hep-ph/0507123 J.D. Vergados and H. Ejiri, PL B606 (2005) 305. 1. Large number of inner-shell holes/X-rays, K:0.2 and L:5 for Xe /I isotopes. 2. Large flight pass, K: 0.1 gr, L: 0.01 gr. 3. Coincidence measurements of X-rays and nuclear recoils.

34 Concluding Remarks

35 . 1. Nuclear matrix elements are checked/adjusted by 1+, 2-, etc strengths by ( 3 He,t) and (d, 2 He), and (IAS,  ) 2. 100 Mo of 0.5 -1 ton can be obtained with 6K centrifuges of MoF 6 3. PL’s data have shown A: the photo-electrons of 2 K/ MeV, and E-resolution of  2.5~3 % to separate 0  peak from 2  tail. 4. RI impurity simulations with NEMO data are promising. 5. MOON 1, MOON proto-type at Oto lab. proves overall MOON sensitivity ( resolution & BG). Liq. Ar in UW. 6. MOON with external  source can be used for Se, Nd, and others. One MOON-type multi-use detector should be build. B. MOON (Multi-layer Observatory Of Neutralinos) is used to WIMP’s/LSP by exclusive measurements of X-rays following WIMP’s nuclear scatterings. Concluding Remarks MOON for m ~ 25 meV and 7 Be ’s with different isotope and different method (spectroscopic) is interesting and realistic.

36 MOON collaboration P.J.Doe, R.G.H.Robertson*, D.E.Vilches, J.F.Wilkerson 、 D. I. Will. CENPA, Univ. Washington. H.Ejiri*, R. Hazama, K.Ichihara, Y.Ikegami, H. Ishii, T.Itahashi N.Kudomi, K.Matsuoka, H. Nakamura, M.Nomachi+, T. Ogama, T. Shima, Y.Sugaya, S.Yoshida. RCNP, and Physics OULNS, Osaka Univ. S.R.Elliott, LANL J.Engel. Phys.Astronomy, Univ. North Carolina. M.Finger, and K. Kuroda, Phys. Charles Univ. Prague K.Fushimi, K. Ichihara, GAS, Tokushima Univ. Tokushima M. Greenfield, ICU, Tokyo. A.Gorin, I.Manouilov, A.Rjazantsev. High Energy Physics, Protvino. A. Para FNAL A. Sissakian, V. Kekelidze, V. Voronon, G. Shirkov A. Titov, JINR V. Vatulin, V. Kutsalo, VNIIEF * Contact persons, + Osaka MOOM1 group head MOON 1 students

37 NNR05 Workshop Neutrino Nuclear Responses in  and Low-energy Astro- ’s II. Date and place Dec. 2-4, 2005. CAST (Center for Advanced Science and Technology) and JASRI (Japan Synchrotron Radiation Research Institute) SPring-8 120 km west of Osaka Univ. and 120 km west of Kansai air-port. CASTSPring-8 1. Nuclear responses for  2. Charge exchange reactions for  ’s 3. Astro nuclear interactions 4. Nuclear EM and weak probes for nuclear responses. 5. DM and Related subjects. http://www.spring8.or.jp/e/conference/appeal/nnr05/,

38 Thank you for attention Welcome to MOON to give rise to


Download ppt "MOON Double beta decays for neutrinos and dark matter Hiro Ejiri Osaka /JASRI /ICU I. Neutrino studies by  and  II. MOON detector and MOON 1 for."

Similar presentations


Ads by Google