Download presentation
Presentation is loading. Please wait.
1
TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS Eckehard Schöll Institut für Theoretische Physik and Sfb 555 “Complex Nonlinear Processes” Technische Universität Berlin Germany http://www.itp.tu-berlin.de/schoell Net-Works 2008 Pamplona 10.6.2008
2
Outline Time-delayed feedback control Introduction: Time-delayed feedback control of nonlinear systems control of deterministic states control of noise-induced oscillations application: lasers, semiconductor nanostructures Neural systems: control of coherence of neurons and synchronization of coupled neurons Neural systems: control of coherence of neurons and synchronization of coupled neurons delay-coupled neurons delayed self-feedback delay-coupled neurons delayed self-feedback Control of excitation pulses in spatio-temporal systems: Control of excitation pulses in spatio-temporal systems: migraine, stroke migraine, stroke non-local instantaneous feedback non-local instantaneous feedback time-delayed feedback time-delayed feedback
3
Why is delay interesting in dynamics? Delay increases the dimension of a differential equation to infinity: delay t generates infinitely many eigenmodes Delay has been studied in classical control theory and mechanical engineering for a long time and mechanical engineering for a long time Simple equation produces very complex behavior Simple equation produces very complex behavior
4
Delay is ubiquitous mechanical systems: inertia electronic systems: capacitive effects (t=RC) latency time due to processing latency time due to processing biological systems: cell cycle time biological systems: cell cycle time biological clocks biological clocks neural networks: delayed coupling, delayed feedback neural networks: delayed coupling, delayed feedback optical systems: signal transmission times optical systems: signal transmission times travelling waves + reflections travelling waves + reflections laser coupled to external cavity (Fabry-Perot) multisection laser semiconductor optical amplifier (SOA)
5
Time delayed feedback control methods Originally invented for controlling chaos (Pyragas 1992): stabilize unstable periodic orbits embedded in a chaotic attractor More general: stabilization of unstable periodic or stationary states in nonlinear dynamic systems stationary states in nonlinear dynamic systems Application to spatio-temporal patterns: Application to spatio-temporal patterns: Partial differential equations Partial differential equations Delay can induce or suppress instabilities Delay can induce or suppress instabilities deterministic delay differential equations deterministic delay differential equations stochastic delay differential equations stochastic delay differential equations
6
Published October 2007 Scope has considerably widened
7
Time-delayed feedback control of deterministic systems Time-delayed feedback (Pyragas 1992): Stabilisation of unstable periodic orbits or unstable fixed points or space-time patterns Time-delay autosynchronisation (TDAS) Extended time-delay autosynchronisation (ETDAS) (Socolar et al 1994) deterministic chaos =T Many other schemes
8
Time-delayed feedback control of deterministic systems stability is measured by Floquet exponent L: dx ~ exp(Lt) or Floquet multiplier m=exp(LT)
9
b complex (1 - ) Beyond Odd Number Limitation
10
Example of all-optical time-delayed feedback control in semiconductor laser Optical feedback: | Stabilisation of fixed point: Schikora, Hövel, Wünsche, Schöll, Henneberger, PRL 97, 213902 (2006) Laser: excitable unit, may be coupled to others to form network motif
11
Stabilization of cw emission: Domain of control of unstable fixed point above Hopf bifurcation | Schikora, Hövel, Wünsche, Schöll, Henneberger, PRL 97, 213902 (2006) Generic model: phase sensitive coupling Generic model: phase sensitive coupling =0.5T 0 =0.9T 0
12
Experimental realization | Schikora, Hövel, Wünsche, Schöll, Henneberger, PRL 97, 213902 (2006)
13
Control of spatio-temporal patterns: semiconductor nanostructure semiconductor nanostructure Without control: Examples: Chemical reaction-diffusion systems Electrochemical systems Semiconductor nanostructures Hodgkin-Huxley neural models | a(x,t): activator variable u(t): inhibitor variable f(a,u): bistable kinetic function D(a): transverse diffusion coefficient Global coupling: Ratio of timescales: R DBRT ● Global coupling due to Kirchhoff equation: I Control parameters: = RC, U 0
14
Chaotic breathing pattern u 9.1 u min, u max = 9.1: above period doubling cascade Spatially inhomogeneous chaotic oscillations J. Unkelbach, A.Amann, W. Just, E. Schöll: PRE 68, 026204 (2003)
15
Stabilisation of unstable period-1 orbit u min, u max ● Period doubling bifurcations generate a family of unstable periodic orbits (UPOs) ● Period-1 orbit: Breathing oscillations Resonant tunneling diode a(x,t): electron concentration in quantum well in quantum well u(t): voltage across diode tracking
16
Time-delayed feedback control of noise-induced oscillations Stabilisation of UPO noise-inducedoscillations ? no deterministic orbits! deterministic chaos =T K. Pyragas, Phys. Lett. A 170, 421 (1992) N. Janson, A. Balanov, E. Schöll, PRL 93 (2004)
17
Time-delayed feedback control of injection laser with Fabry-Perot resonator Suppression of noise-induced relaxations oscillations in semiconductor lasers | Lang-Kobayashi model: Power spectral density of optical intensity Suppression of noise for 0.5 T RO Flunkert and Schöll, PRE 76, 066202 (2007)
18
Feedback control of noise-induced space- time patterns in the DBRT nanostructure G. Stegemann, A. Balanov, E. Schöll, PRE 73, 016203 (2006) =4, K=0.4 D u = 0.1, D a = 10 -4
19
Enhancement of temporal regularity: correlation time vs. noise amplitude vs. feedback gain =7: increase =5: decrease G. Stegemann, A. Balanov, E. Schöll, PRE 73, 016203 (2006) Large effect for small noise intensity D u = 0.1, D a = 10 -4
20
Correlation time vs. delay time Real parts of eigenvalues Period: inverse imaginary parts of eigenvalues Control of time- scales: basic period of oscillations Control of coherence: optimum
21
Coherence resonance – normalized autocorrelation function autocorrelation function Correlation time: Correlation time: Simplified FitzHugh-Nagumo (FHN) system: excitable neuron Excitable System a=1.1 =0.01 Gang, Ditzinger, Ning, Haken, PRL 71, 807 (1993) Pikovsky, Kurths, PRL 78, 775 (1997)
22
Example of coherence resonance: neuron Simulation from S.-G. Lee, A. Neiman, S. Kim, PRE 57, 3292 (1998). S.-G. Lee, A. Neiman, S. Kim, PRE 57, 3292 (1998). Time series of the membrane potential for various noise intensity:
23
FitzHugh-Nagumo model with delay Janson, Balanov, Schöll, PRL 93, 010601 (2004) Excitability a=1: excitability threshold u activator (membrane voltage) v inhibitor (recovery variable) e time-scale ratio
24
Coherence vs. and K D=0.09 D=0.09; K=0.2 Numerics: Balanov, Janson, Schöll, Physica D 199, 1 (2004) Analytics: Prager, Lerch, Schimansky-Geier, Schöll, J. Phys.A 40, 11045 (2007)
25
2 coupled FitzHugh-Nagumo systems: coupled neuron model as network motif ● 2 non-identical stochastic oscillators: diffusive coupling frequencies tuned by D 1, D 2 B. Hauschildt, N. Janson, A. Balanov, E. Schöll, PRE 74, 051906 (2006) a= 1.05, 1 =0.005, 2 = 0.1, D 2 =0.09 : coherence resonance as function of D 1
26
Time series for various noise intensities ● C= 0.07
27
Stochastic synchronization ● Frequency synchronization : mean interspike intervals (ISI) ● Phase synchronization: 1:1 synchronization index (Rosenblum et al 2001) o X + + weakly synchronized o moderately synchronized x strongly synchronized
28
Local delayed feedback control: enhance or suppress synchronization ● Moderately synchronized system (o) System 1 1:1 synchronization index
29
Can local delayed feedback de-synchronize 2 coupled neurons? ● Weakly synchronized system (+) ● Strongly synchronized system (x)
30
Delayed coupling, no self-feedback + noise Dahlem, Hiller, Panchuk, Schöll, IJBC in print, 2008 induces antiphase oscillations
31
Sustained oscillations induced by delayed coupling excitability parameter a=1.3 a=1.05
32
Regime of oscillations excitability parameter a=1.3
33
Delayed coupling and delayed self-feedback excitability parameter a=1.3, oscillatory regime, C=K=0.5 Average phase synchronization time: Schöll, Hiller, Hövel, Dahlem, 2008
34
Regimes of synchronized oscillation modes
35
Different modes of oscillations excitability parameter a=1.3 anti-phase in-phase oscillator death bursting
36
Spreading depolarization wave (cortical spreading depression SD) ● migraine aura (visual halluzinations) ● stroke Examples:
37
Migraine aura: neurological precursor (spatio-temporal pattern on visual cortex)
38
Migraine aura: visual halluzinations
44
Measured cortical spreading depression Visual cortex 3 mm/ min
45
FitzHugh-Nagumo (FHN) system with activator diffusion u activator (membrane voltage) v inhibitor (recovery variable) D u diffusion coefficient e time-scale ratio of inhibitor and activator variables b excitability parameter Dahlem, Schneider, Schöll, Chaos (2008) _
46
Transient excitation: tissue at risk (TAR) pulses die out after some distance Dahlem, Schneider, Schöll, J. Theor. Biol. 251, 202 (2008) different values of b and e
47
Boundary of propagation of traveling excitation pulses (SD) excitable: traveling pulses non-excitable: transient Propagation verlocitypulse
48
FHN system with feedback Non-local, time-delayed feedback: Instantaneous long-range feedback: Time-delayed local feedback: (electrophysiological activity) (neurovascular coupling) Dahlem et al Chaos (2008)
49
Non-local feedback: suppression of CSD uu vv uv vu Tissue at risk
50
Non-local feedback: shift of propagation boundary K=+/-0.2 pulse width Dx
51
Time-delayed feedback: suppression of SD uu vu uv vv Tissue at risk
52
Time-delayed feedback: shift of propagation boundary uu vu vv vu K=+/-0.2 pulse width Dt
53
Conclusions Delayed feedback control of excitable systems Control of coherence and spectral properties Stabilization of chaotic deterministic patterns 2 coupled neurons as network motif FitzHugh-Nagumo system: suppression or enhancement of stochastic synchronization by local delayed feedback Modulation by varying delay time Delay-coupled neurons: delay-induced antiphase oscillations of tunable frequency delayed self-feedback: synchronization of oscillation modes Failure of feedback as mechanism of spreading depression non-local or time-delayed feedback suppresses propagation of excitation pulses for suitably chosen spatial connections or time delays
54
Students ● Roland Aust ● Thomas Dahms ● Valentin Flunkert ● Birte Hauschildt ● Gerald Hiller ● Johanne Hizanidis ● Philipp Hövel ● Niels Majer ● Felix Schneider Collaborators Andreas Amann Alexander Balanov Bernold Fiedler Natalia Janson Wolfram Just Sylvia Schikora Hans-Jürgen Wünsche Markus Dahlem Postdoc
55
Published October 2007
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.