Download presentation
Presentation is loading. Please wait.
1
Thanks to Harvard/MIT Team: Jake Jaffe, Kyriacos Leptos, Matt Wright, Daniel Segre, Martin Steffen DARPA BIOCOMP 23-May-2002 Model-data integration. Issues of flux optimality & polymer mechanics of 4D cell models
2
gggatttagctcagtt gggagagcgccagact gaa gat ttg gag gtcctgtgttcgatcc acagaattcgcacca Post- 300 genomes & 3D structures
3
DoD Relevance: Accurate Bio I/O Engineering Over-determined Calculable Protein folding vs. crystallography Accurate Comprehensive/Quantitative Bio-Systems Embrace outliers Analytic & Synthetic Useful Computer-Aided-Design (CAD) >>INTEGRATION<<
4
DNA RNA Protein: in vivo & in vitro interactions Metabolites Replication rate Environment Technical challenge: Integrating Measures & Models Microbes Cancer & stem cells Darwinian In vitro replication Small multicellular organisms RNAi Insertions SNPs
6
Human Red Blood Cell ODE model 200 measured parameters GLC e GLC i G6P F6P FDP GA3P DHAP 1,3 DPG 2,3 DPG 3PG 2PG PEP PYR LAC i LAC e GL6PGO6PRU5P R5P X5P GA3P S7P F6P E4P GA3PF6P NADP NADPH NADP NADPH ADP ATP ADP ATP ADP ATP NADH NAD ADP ATP NADH NAD K+K+ Na + ADP ATP ADP ATP 2 GSHGSSG NADPHNADP ADO INO AMP IMP ADO e INO e ADE ADE e HYPX PRPP R1P R5P ATP AMP ATP ADP Cl - pH HCO 3 - Jamshidi, Edwards, Fahland, Church, Palsson, B.O. (2001) Bioinformatics 17: 286. (http://atlas.med.harvard.edu/gmc/rbc.html)
7
Gene deletions Normalized optimal growth Linear Programming Flux Balance Analysis (v ko =0)
8
Minimal Perturbation Analysis for the analysis of non-optimal metabolic phenotypes Daniel Segre Challenge #1: Suboptimality of mutants --integrating growth rate and flux data
10
This is a Quadratic Programming (QP) problem: Minimize Dist= i (x i -a i ) 2 given Sx=b ; x 0 Minimize (x T Qx)/2 + a T x given Sx=b ; x 0 Standard form:
11
Optimal (FBA) Suboptimal(MPA) p = 4·10 -3 p = 10 -5 22 test for prediction of essential genes:
13
050100150200 0 20 40 60 80 100 120 140 160 180 200 1 2 3 4 56 7 8 9 10 11 12 1314 15 16 1718 C009-limited -50050100150200250 -50 0 50 100 150 200 250 1 2 3 4 56 7 8 9 10 11 12 1314 15 16 17 18 Experimental Fluxes Predicted Fluxes -50050100150200250 -50 0 50 100 150 200 250 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 1718 pyk (LP) WT (LP) Experimental Fluxes Predicted Fluxes Experimental Fluxes Predicted Fluxes pyk (QP) =0.91 p=8e-8 =-0.06 p=6e-1 =0.56 P=7e-3
14
DNA RNA Protein: in vivo & in vitro interactions Metabolites Replication rate Environment Technical challenge: Integrating Measures & Models Microbes Cancer & stem cells Darwinian In vitro replication Small multicellular organisms RNAi Insertions SNPs
15
Minimal Perturbation Analysis for the analysis of non-optimal metabolic phenotypes Challenge #1: Suboptimality of mutants --integrating growth rate and flux data
16
Polymer mechanics of 4D cell models (Automating integration of data) Challenge #2: integrating proteomics & in vivo crosslinking data
17
Mapping genome folding DNA:DNA, DNA:protein, protein:protein in vivo crosslinks Dekker etal. Science 2002 295:1306-11 Capturing chromosome conformation.
18
In vivo crosslinking DNA-binding proteins
19
Retention time min P S W C M V A R C C T K D Q G A G L F E K [Optional 1 st & 2 nd Protein dimensions: Subcellular fractions, Sizing of native protein complexes 1st peptide Dimension: Strong Cation Exchange Charge 2 nd peptide Dimension: Reverse Phase Chromatography Hydrophobicity 3 rd peptide Dimension: Mass Spectrometry Mass per charge Multidimensional protein and peptide separations for MS quantitation m/z
20
Β.Β.A. C. rt 1 rt 2 rt 3 MS1 D.
21
Minimal Cell Projects The first FULL proteome model would benefit from a small number of natural cell states & genes. 3D-structure of a cell during replication & motility. Genome engineering / complete synthesis.
22
Small sequenced genomes (excludes organelle/symbionts) Mollicutes = cell-wall-less bacteria, a subgroup of Clostridia “gram-positive” o Acholeplasmataceae Acholeplasma, Anaeroplasma, Phytoplasma o Mycoplasmatales Entomoplasmataceae (florum) Mycoplasmataceae pulmonis urealyticum pneumoniae genitalium (mobile) Spiroplasmataceae Megabases
23
Motility Species nm/ secReplicateTemp M. mobile30005 hr25 M. pneumoniae 300837 M. florum 01.530 U. urealyticum 0>1037 E.coli200000.437 H. sapiens 1000 >1037 RNA Pol / ribosome20 (=50 nt/s) E.coli DNA Pol3 300 (=1000 nt/s)
24
Attachment organelle replication Seto S, Layh-Schmitt G, Kenri T, Miyata M. J Bacteriol 2001 183:1621 Visualization of the attachment organelle and cytadherence proteins of Mycoplasma pneumoniae by immunofluorescence microscopy.
25
Mycoplasma pneumoniae Regula, et al, Microbiology 147:1045-57, scale bar = 100 nm
26
Hypothetical mechanisms
27
Proteo- genomic mapping (of peptide data in 3 forward & 3 reverse frames)
28
Use of proteogenomic mapping to discover B. a new ORF. C. a new ORF & delete an inaccurately predicted ORF. D. N-terminal extension of an existing ORF.
29
Constraints Replication Membrane-bound polyribosomes Other RNA and/or protein complexes Metabolism DNA Structural Forces
30
Genome folding & cell 3D structure Seto & Miyata (1999) Partitioning, movement, and positioning of nucleoids in Mycoplasma capricolum J. Bact. 181:6073 Cell = 0.5 500-800 kbp genome Extended diameter = 80 ~200 transverses with each membrane encoding gene anchored to the cell surface. How to segregate this?
31
Paired fork model Dingman CW. Bidirectional chromosome replication: some topological considerations. J Theor Biol 1974 Jan;43(1):187-95. Sundin O, Varshavsky A. Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell. 1980 Aug;21(1):103-14. Hearst JE, Kauffman L, McClain WM. A simple mechanism for the avoidance of entanglement during chromosome replication. Trends Genet. 1998 Jun;14(6):244-7. Bouligand, Y, Norris V (2000) “Both replication forks appear to be part of a single complex or factory, as first proposed by Dingman.” http://wwwmc.bio.uva.nl/texel/tekst/norris.html http://wwwmc.bio.uva.nl/texel/tekst/norris.html Roos M, Lingeman R, Woldringh CL, Nanninga N. Biochimie 2001 Jan;83(1):67-74 Experiments on movement of DNA regions in Escherichia coli evaluated by computer simulation.
32
Constraints Replication Membrane-bound polyribosomes could anchor the RNA polymerase and hence the gene’s DNA to within 20 nm of the cell surface. Other RNA and/or protein complexes Metabolism DNA Structural Forces
33
Origin Blue: First MPN gene# Green : Mid gene # 344 (ter) Red: Last gene# 688 Side view, no replication ( gene#)
34
Off-axial view, no replicated segments, unoptimized membrane Yellow: Membrane Pink: Ribosomal White: Hypothetical & abundant Green : Misc. abundant Blue: Weak
35
Axial view, no replicated segments Yellow: Membrane Pink: Ribosomal White: Hypothetical & abundant Green : Misc. abundant Blue: Weak
36
Origin Yellow: Membrane Pink: Ribosomal White: Hypothetical & abundant Green : Misc. abundant Blue: Weak Side view, no replicated segments
37
Origin Blue: Origin of replication Red: Terminus Side view, no replication (dis from ori)
38
R1R1 R2R2 M1M1 M2M2 M3M3 Simple example cost function for chromosome structure optimization
39
2002_5_16_h18_42 31.5783 0.0595431 0.444777 -0.148005 -0.12554 39.676 0.007241 2002_5_16_h19_0 61.4522 0.046929 -0.0010534 -0.37642 0.64887 -7.9804 -0.1281 2002_5_16_h19_19 91.2823 0.075882 0.16159 -0.2373 1.0718 8.0774 0.076364 2002_5_16_h19_34 45.8961 0.10725 0.165795 -0.292295 -0.0370155 46.2283 0.3454 2002_5_16_h19_42 38.601 0.0410951 0.363854 0.154569 0.0889424 24.162 0.1203 2002_5_16_h20_3 35.3927 0.0355828 -0.434093 0.17439 0.0015235 -24.9479 -0.02968 2002_5_16_h20_30 36.5715 0.0495523 0.0201888 0.533363 0.04049 -11.7067 -0.0717 2002_5_16_h20_50 108.2712 -0.03419 0.366322 -0.216694 -1.30726 -23.67 0.0181 2002_5_16_h21_5 45.4948 0.022745 0.44564 -0.26902 -0.18342 -9.5072 0.27189 2002_5_16_h21_50 50.4768 0.172497 -0.282122 -0.285109 0.478558 -46.2911 0.2758 2002_5_16_h21_56 37.6382 0.0304836 0.398325 0.201159 0.0797413 17.013 -0.81 2002_5_16_h23_41 35.4194 0.0445114 0.532795 0.0134364 0.117782 -42.2785 0.451 2002_5_17_h0_2 39.8033 0.11543 -0.006943 -0.426032 -0.128618 -35.8674 -0.03049 2002_5_17_h0_10 62.7409 0.0093794 0.040845 -0.10502 0.35003 3.4834 0.23764 2002_5_17_h4_12 47.0811 0.116387 0.146311 -0.520041 -0.28928 20.3289 0.1700 2002_5_17_h4_20 33.5733 0.096 0.00628 0.547581 0.0413792 22.1782 -0.1598 2002_5_17_h4_29 41.1507 0.167149 0.422391 0.126038 0.59806 38.4758 0.1079 2002_5_17_h4_35 46.4101 0.0765229 0.106407 0.460038 0.350776 12.6997 -0.01097 2002_5_17_h4_50 31.2508 0.0209708 0.484708 -0.131666 0.0525948 17.7536 -0.07883 2002_5_17_h5_41 41.8434 0.0638499 0.411257 0.20358 0.380453 19.9535 -0.04410 2002_5_17_h5_54 31.7824 0.0219507 0.568525 -0.0296989 -0.25155 10.4541 0.01661 2002_5_17_h6_39 42.8122 0.21156 0.003633 -0.502632 0.315238 -61.1441 0.39604 2002_5_17_h6_45 31.5284 0.026136 0.52898 -0.0904436 -0.0902993 -25.0525 0.1101 2002_5_17_h7_17 44.8789 0.069805 -0.00365152 -0.539196 0.179759 -18.5657 0.0189 2002_5_17_h7_26 110.863 0.231782 0.311698 0.218959 -1.51978 11.0336 0.01407 2002_5_17_h7_34 27.5664 0.0463924 0.44446 0.077077 -0.237724 -26.988 -0.0272 2002_5_17_h7_51 43.5492 0.0300962 0.230355 0.293637 0.0425634 12.5355 -0.0275 2002_5_17_h8_15 44.922 0.107868 0.0263435 -0.554559 -0.298406 -18.3352 0.04061 E_final s Searching six helical parameters for chromosomal fold
40
Monte carlo minimization of the model fit to constraints.
41
2002_5_17_h5_54 70.5984 31.7824
42
2002_5_16_h20_3 95.1449 35.3927
43
2002_5_17_h4_20 92.7126 33.5733
44
2002_5_17_h4_50 749.4929 31.2508
45
data_2002_5_19_h0_40
46
data_2002_5_16_h18_42
47
data_2002_5_16_h19_34
48
data_2002_5_16_h21_50
49
data_2002_5_16_h19_42
50
data_2002_5_16_h21_56
51
data_2002_5_16_h20_3
52
data_2002_5_16_h19_0
53
data_2002_5_16_h20_30
54
data_2002_5_16_h21_5
55
Origin Blue: Left replicated segment (yelgr=high gene#) Red: Right (i.e. middle) segment Aqua: unduplicated segment of the circular genome Avoidance of entanglement throughout cell cycle
56
M. pneumoniae genes generally point away from Ori More significant if abundance data are integrated Alignment of known motors: Polymerases,b ribosomes, F1 ATPase
57
Biospice 2.0 Deliverables: toolsets for data integration & optimality assessment #1QP MPA flux & growth modeling #2: 4D-model current plan: Chromosome segregation Membrane-bound polysomes Ribosomal protein/rRNA assembly Motility (coordination with replication origin) Next few months: Other protein complexes Space filling metric Replication entanglement metric In vivo crosslinking
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.