Download presentation
Presentation is loading. Please wait.
1
Prediction of protein localization and membrane protein topology Gunnar von Heijne Department of Biochemistry and Biophysics Stockholm Bioinformatics Center Stockholm University
2
Stockholm Bioinformatics Center www.sbc.su.se sorting
3
Protein localization
4
Protein sorting in a eukaryotic cell SP
5
The ’canonical’ signal peptide n-region: positively charged h-region: hydrophobic c-region: more polar, small residues in -1, -3 mTP
6
mTPs are rich in R & K and can form amphiphilic helices (Abe et al., Cell 100:551) cTP mTP bound to Tom20
7
Typical chloroplast transit peptide ANN
8
A simple artificial neural network (ANN) output layer input layer Inside ANN
9
Artificial neural networks: a summary - a high-quality dataset (positive and negative examples) - an ANN architecture (can be optimized) - all internal parameters in the ANN are systematically optimized during a training session - evaluate the predictive performance using cross- validation ChloroP
10
ChloroP (Prot.Sci. 8:978) TargetP
11
TargetP - a four-state SP/mTP/cTP/other predictor (JMB 300:1105) performance
12
TargetP sensitivity/specificity sensspec SP.91.96 mTP.82.90 cTP.85.69 other.85.78 sens = tp/(tp+fn)spec = tp/(tp+fp) Other predictors
13
Other ways to predict localization - amino acid composition - sequence homology - domain structure - phylogenetic profiles - expression profiles Membrane proteins
14
Popular prediction programs SignalP (NN, HMM) ChloroP TargetP LipoP ------- MitoProt PSORT Membrane proteins www.cbs.dtu.dk
15
Membrane protein topology
16
A simulated lipid bilayer (Grubmüller et al.)
17
Only two basic structures ( Quart.Rev.Biophys. 32:285) Helix bundle ß-barrel Lipid/prot interactions
18
Most MPs are synthesized at the ER SP
19
The basic model (courtesy Bill Skach) prediction
20
Topology prediction
21
TM helix lengths are typically 20-30 residues (Bowie, JMB 272:780) Trp, Tyr
22
Trp & Tyr are enriched in the region near the lipid headgroups (Prot.Sci. 6:808; 7:2026) Loop lengths
23
Loops tend to be short (Tusnady & Simon, JMB 283:489) PI rule
24
The ’positive inside’ rule (EMBO J. 5:3021; EJB 174:671, 205:1207; FEBS Lett. 282:41) Bacterial IM in: 16% KR out: 4% KR Eukaryotic PM in: 17% KR out: 7% KR Thylakoid membrane in: 13% KR out: 5% KR Mitochondrial IM In: 10% KR out: 3% KR in out prediction
25
The positive-inside rule applies to all organisms (Nilsson, Persson & von Heijne, submitted) number of genomes amino acid
26
Topology can be manipulated (Nature 341:456) Lep constructs expressed in E. coli 10+ 2+ 4+ 0+ PK
27
Topology prediction - a classical problem in bioinformatics 4 characteristics
28
Three important characteristics ~20 hydrophobic residues predictors ’Positive inside’ rule Trp, Tyr
29
Popular topology predictors TMHMM (HMM) HMMTOP (HMM) TopPred (h-plot + PI-rule) MEMSAT (dynamic programming) TMAP (h-plot, mult. alignment) PHD (NN, mult. alignment) toppred
30
TopPred (JMB 225:487) http://bioweb.pasteur.fr/ seqanal/interfaces/ toppred.html - construct all possible topologies - rank based on + E. coli LacY TMHMM
31
TMHMM (Sonnhammer et al., ISMB 6:175, Krogh et al., JMB 305:567) h & l models www.cbs.dtu.dk www.sbc.su.se A hidden Markov model-based method
32
HMMTOP (Tusnady & Simon, JMB 283:489) performance
33
Helix & loop models in TMHMM HMMTOP
34
TMHMM performance (Krogh et al., JMB 305:567; Melén et al. JMB 327:735) Discrimination globular/membrane: sens & spec > 98% Correct topology: 55-60% Single TM identification: sensitivity: 96% specificity: 98% Training set: 160 membrane proteins 650 globular proteins # of TM proteins
35
Can performance be improved? Consensus predictions Multiple alignments Experimental constraints # of TM proteins
36
’Consensus’ predictions indicate reliability (FEBS Lett. 486:267) 60 E. coli proteins majority level fraction correct/coverage 5 prediction methods used 46% of 764 predicted E. coli IM proteins are in the 5/0 or 4/1 classes Partial consensus
37
TMHMM reliability scores (Melén et al. JMB 327:735) TMHMM output: 1. Mean probability p mean 2. Minimum probability p min (label) 3. P bestPath /P allPaths Sequence: M C Y G K C I p(i): 0.78 0.78 0.78 0.76 0.76 0.08 0.03 p(h): 0.00 0.00 0.02 0.02 0.15 0.85 0.93 p(o): 0.22 0.22 0.20 0.20 0.08 0.07 0.04 Label: i i i i i h h S3 results
38
TMHMM (score 3) Prediction accuracy vs. coverage Test set bias percent correct coverage ~70%~45% 92 bacterial proteins
39
”Experimentally known topologies” is a biased sample percent 0-0.25 0.25-0.5 0.5-0.750.75-1 score interval Estimate true performance
40
Correlation between accuracy and TMHMM S3 score mean score percent correct genomes
41
Expected TMHMM performance on proteomes E. coli S. cerevisiae test set C. elegans coverage percent correct Add C-term.
42
Original TMHMM prediction, one TM helix missing TMHMM prediction with C-terminus fixed to inside Experimental information helps (JMB 327:735) improvement
43
When the location of the C-terminus is known, the correct topology is predicted for an estimated ~70% of all membrane proteins (~ 55% when not known) Reporter fusions Experimental information helps (JMB 327:735)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.