Download presentation
Presentation is loading. Please wait.
1
JRC- Brussels- PF JRC Brussels 1 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels1 The IPCC AR4 Experiment II: Air pollution and climate change in 2030 The team: Frank Dentener, JRC emissions, deposition, organisation. David Stevenson, Un. Edinburgh ozone budgets, climate change, organisation H. Eskes, KNMI NO2 columns Kjerstin Ellingsen, Un. Oslo: surface ozone+data handling, web-site + ca. 20 participating groups from Europe, US, and Japan.
2
JRC- Brussels- PF JRC Brussels 2 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels2 Model Institute Contact, e-mail addresses Domain / resolutionUnderlying GCM/ MeteorologyAdvection schemeConvection scheme IASB IASB/Belgium J.-F. Müller jfm@aeronomie.be 5 x 5 25 levels sfc – 50 hPa monthly means from ECMWF reanalyses (1993-2001 ERA40) semi-Lagrangian [Smolarkiewicz and Rasch, 1991] described in Costen et al. [1998]; cumulo-nimbus distrbution taken from ISCCP KNMI KNMI / IMAU Utrecht Twan van Noije Peter van Velthoven 2 lat x 3 lon 25 levels sfc – 0.48 hPa ECMWF 6-h operational forecasts (2000) Slopes scheme [Russel and Lerner, 1981] mass flux scheme of Tiedtke [1989] TM5 JRC Frank.dentener@jrc.it Maarten.krol@jrc.it 1 lat x 1 lon zoom over Europe, N. America, and Asia, other wise 6x4 25 levels sfc – 0.48 hPa ECMWF 3-6-h operational forecasts (2000) Slopes scheme [Russel and Lerner, 1981] mass flux scheme of Tiedtke [1989] MATCH- MPIC Max Planck Institute for Chemistry / NCAR Tim.butler@ 5.6 x 5.6 28 levels sfc – 2 hPa NCEP/NCAR Reanalysis and ECMWF Reanalysis SPITFIRE [Rasch and Lawrence, 1998] Zhang and McFarlane [1995] for deep convection; Hack [1994] for shallow convection UIO2 University of Oslo Michael Gauss michaelg@geo.uio.no 2.8 x2.8 40 levels sfc – 10 hPa ECMWF forecast data Second Order Moments [Prather, 1986] mass flux scheme of Tiedke [1989] LMDz/ INCA LSCEDidier Hauglustaine (hauglustaine@cea.fr) Sophie Szopa (sophie.szopa@cea.fr) 1.lon x 2.5 lat 19 levels sfc - 3hPa GCM (or nudged to ECMWF/ERA15-ERA40-OD) Finite Volume second order (Van Leer, 1977) mass flux scheme of Tiedke [1989] STOCHEM- HadGEM UK Met Office 3.75 x 2.5 20 levels sfc – 40km GCM (HadGEM) LagrangianDescribed in Collins et al. [2002] GEOS- CHEM LMCA-EPFLIsabelle.bey@epfl.ch 4°latx5°lon 30 levels sfc – 0.01hPa GEOS winds NASA GMAO Lin and Rood scheme [Lin and Rood, 1996] mass fluxes are taken directly from the GISS 2’ meteorology described by Allen et al. [1997] CHASER FRCGCKengo Sudo kengo@jamstec.go.jp 2.8 x2.8 32 levels sfc – 3 hPa GCM (CCSR/NIES) Lin and Rood scheme [Lin and Rood, 1996] prognostic Arakawa-Schubert scheme in CCSR/NIES GCM MOCAGE Météo-France, CNRMVincent-Henri.Peuch@meteo.fr, Beatrice.Josse@meteo.fr 2°x2° 47 levels sfc – 5 hPa ARPEGE operational analyses (Météo-France), 6 hourly Options : forecasts, ECMWF analyses or re-analyses. Semi-lagrangian [Williamson and Rasch, 1989] Mass flux scheme [Bechtold et al., 2001] Option: [Tiedke, 1989] FRSGC_UCI FRCGCOliver Wild oliver@jamstec.go.jp T42 37 levels, sfc-2 hPa ECMWF-IFS pieced-forecast data for 2000 Second order moment [Prather, 1987] Mass flux scheme of Tiedke [1989] ULAQ L’Aquila UniversityVeronica Montanaro Veronica.montanaro@aquila.infn.it Gianni Pitari Gianni.pitari@aquila.infn.it 10°X22.5° 26 levels sfc-0.04 hPa GCMEulerian flux form Pitari et al (2002) following Muller and Brasseur (1995) GMIDAO NASA-GSFCJose M. Rodriguez jrodriguez@code916.gsfc.nasa.gov Susan Strahan strahan@prometheus.gsfc.nasa.gov 4x5 46 levels sfc – 0.15 mb NASA-GMAO (GEOS-STRAT) Lin and Rood (1996) Utilize archived mass fluxes - Transport scheme from MATCH GMICCM NASA-GSFCJose M. Rodriguez jrodriguez@code916.gsfc.nasa.gov Susan Strahan strahan@prometheus.gsfc.nasa.gov 4x5 52 levels sfc -.007 mbar CCM3Lin and Rood (1996) Utilize archived mass fluxes - Transport scheme from MATCH MOZECH Max Planck Institute for Meteorology, Hamburg (MPI-M) Martin G. Schultz Martin.schultz@dkrz.de Global, T63L31 (Gaussian grid, approx. 1.9 1.9 ) ECHAM5.2 in AMIP mode with SST and seaice from IPCC run transient 1850-2000 and continued with scenario SRES B1 (IPCC run with coupled atmosphere-ocean model, AQ2030 model without ocean) Lin&Rood Tiedtke with modifications after Nordeng LLNL MOZART4 NCARJean Francois Lamarque T42, L26, extending 4 hPa CCSM3Lin&Rood Zhang&McFarlane (deep); Hack (shallow) STOCED UM_CAM MOZ2- GFDL
3
JRC- Brussels- PF JRC Brussels 3 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels3 GMICCM NASA-GSFCJose M. Rodriguez jrodriguez@code916.gsfc.nasa.gov Susan Strahan strahan@prometheus.gsfc.nasa.gov 4x5 52 levels sfc -.007 mbar CCM3Lin and Rood (1996) Utilize archived mass fluxes - Transport scheme from MATCH MOZECH Max Planck Institute for Meteorology, Hamburg (MPI-M) Martin G. Schultz Martin.schultz@dkrz.de Global, T63L31 (Gaussian grid, approx. 1.9 1.9 ) ECHAM5.2 in AMIP mode with SST and seaice from IPCC run transient 1850-2000 and continued with scenario SRES B1 (IPCC run with coupled atmosphere-ocean model, AQ2030 model without ocean) Lin&Rood Tiedtke with modifications after Nordeng LLNL MOZART4 NCARJean Francois Lamarque T42, L26, extending 4 hPa CCSM3Lin&Rood Zhang&McFarlane (deep); Hack (shallow) STOCED Unvisity of EDingburg UM_CAM GISS NASA
4
JRC- Brussels- PF JRC Brussels 4 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels4 IPCC4 Experiment II: 2030 Photcomp Focus on the year 2030; ‘the inter-mediate’ future which is of direct relevance to policy makers New emissions scenarios that recently became available from the IIASA group: lower emissions of CH4 and O3 precursors. Emphasis on the synergetic effect of air quality and greenhouse gas emissions (CH4); with focus on human health and vegetation exposure. Calculate the corresponding Radiative Forcing. Climate change and emission controls as driving factors of air pollution Synthesis of results to be delivered to IPCC AR4 Chapter 7 : “Coupling between Changes in the Climate System and Biogeochemistry”
5
JRC- Brussels- PF JRC Brussels 5 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels5 Scenarios/simulation S1-S5 Sim.ID emissionsMeteoDescription S1IIASA-CLE-20002000Baseline S1cIIASA-CLE-20001990sBaseline for climatological period S2IIASA-CLE-20302000IIASA current legislation S2cIIASA-CLE-20301990sIIASA current legislation for climatological period S3IIASA-MFR- 2030 2000IIASA MFR (Maximum Feasible Reduction optimistic technology scenario) S4A2-20302000SRES A2 (the most ‘pessimistic’ IPCC SRES scenario), harmonized with IIASA emissions for 2000 S4sA2-20302000SRES A2 with ‘high’ ship emissions S5cIIASA-CLE-20302020sClimate Change Simulation. Prescribed SST data for the 2020s.
6
JRC- Brussels- PF JRC Brussels 6 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels6 IIASA, RAINS Current Legislation. Maximum Feasible Reduction. NO emissions IPCC SRES scenarios “large difference for period 2000-2020”
7
JRC- Brussels- PF JRC Brussels 7 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels7 IPCC
8
JRC- Brussels- PF JRC Brussels 8 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels8 NOx regional estimates RAINS USA China Ships + aircraft Special exp. Lead by V. Eyring (DLR)
9
JRC- Brussels- PF JRC Brussels 9 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels9
10
JRC- Brussels- PF JRC Brussels 10 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels10 This paper describes: IIASA emission scenarios (gridded + source categories) Development of CH4 concentrations used in 2000 and 2030 experiments The IPCC experiment is a natural extension of this work: Multi model (almost 20 models, USA, Europe, Japan) Include A2 SRES (non proliferation) (worked up, thanks to A. Sankovski Climate change (6 models) NH3 emission (from IMAGE3; B. Eickhout, L. Bouwman provided 2000 and SRES B2 2030. Biomass burning (GFED, G.vd Werf, kept constant among scenarios)
11
JRC- Brussels- PF JRC Brussels 11 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels11 REQUESTED OUTPUT Hourly surface ozone [ppbv] Daily average tropospheric column ozone 10:30 Local Time NO2 column (molec/cm2). 10:30 Local Time CH2O column (molec/cm2). 2D monthly O3 dry, oxidized and reduced nitrogen, and sulfur deposition fields. 3D monthly mean fields for O3, CO, CH4 NO, NO2, and OH. 3D monthly mean field of the CH4+OH destruction flux. 3D monthly budgets of ozone production and destruction, 2D surface deposition. 2D stratospheric O3 influx
12
JRC- Brussels- PF JRC Brussels 12 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels12 Deposition of NOy, NHx, and SOx: Ecosystem inputs Biodiversity Eutrophication Acidification F. Dentener, J. Drevot, J.F. Lamarque, others
13
JRC- Brussels- PF JRC Brussels 13 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels13
14
JRC- Brussels- PF JRC Brussels 14 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels14 NOy WET DEPOSITION
15
JRC- Brussels- PF JRC Brussels 15 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels15 Difference of S2-S1, total NOy deposition.
16
JRC- Brussels- PF JRC Brussels 16 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels16 NOy wet deposition zoom over Europe
17
JRC- Brussels- PF JRC Brussels 17 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels17
18
JRC- Brussels- PF JRC Brussels 18 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels18 SOMO35 35 ppbv WHO recommendation Sum of excess of daily maximum 8-h means over a cutoff of 35 ppb calculated for all days of the year. Diagnostics: ppb*days But also look at other diagnostics/air quality indices, as well as model ozone deposition fluxes. Lisa Emberson, Rita van Dingenen, Martin Schultz, others.
19
JRC- Brussels- PF JRC Brussels 19 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels19 SUMO35, S1
20
JRC- Brussels- PF JRC Brussels 20 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels20 SUMO35, S2-S1
21
JRC- Brussels- PF JRC Brussels 21 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels21 SUMO35, S3-S1
22
JRC- Brussels- PF JRC Brussels 22 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels22 “Air quality from space” NO2 column from GOME 2000; with models In the light of uncertainties between different retrievals Exercise lead by H. Eskes, T. van Noije (KNMI); Claire Granier (POET), N. Savage, Uni Bremen, Harvard/Dalhousie.
23
JRC- Brussels- PF JRC Brussels 23 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels23 Dalhousie/Harvard vs. BIRA/KNMI
24
JRC- Brussels- PF JRC Brussels 24 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels24
25
JRC- Brussels- PF JRC Brussels 25 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels25 Experiment 2: S4 Climate Change and Radiative Forcing How will climate change modify atmospheric composition by 2030? Repeat S2 (CLE emissions) with changed climate Multiple years needed to see signal above interannual variability Prescribed SSTs from HadCM3 is92a expt Analysis of: Zonal mean ozone fields Ozone budgets; Climate change experiments David Stevenson+ climate change modellers
26
JRC- Brussels- PF JRC Brussels 26 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels26 Annual Zonal Mean O 3 S1 Mask O 3 >150ppbv Extra model here
27
JRC- Brussels- PF JRC Brussels 27 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels27 Annual Zonal Mean ΔO 3 S2 – S1 -10 -5 0 5 10 ppbv
28
JRC- Brussels- PF JRC Brussels 28 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels28 S1 (y2000) O 3 Budgets / Tg(O 3 )/yr)
29
JRC- Brussels- PF JRC Brussels 29 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels29 S2–S1 Δ(O 3 Budgets) / Tg(O 3 )/yr)
30
JRC- Brussels- PF JRC Brussels 30 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels30
31
JRC- Brussels- PF JRC Brussels 31 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels31 How is this BIG effort going to be used: GRL paper with high lights and synthesis Some results in IPCC chapter 7 Deposition (F. Dentener et al.) Surface ozone and health (K. Ellingsen et al.) Climate change, ozone, ch4 and RF (D. Stevenson et al.) NO2 (H. Eskes et al.) Ecosystems and ozone fluxes ( R. v Dingenen, L. Emberson, D. Stevenson tbd) And hopefully a lot of spin-off publications and users.
32
JRC- Brussels- PF JRC Brussels 32 IIASA-ACCENT-Vienna 27.01.2004 JRC Brussels32
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.