Download presentation
1
Stationarity and Degree of Stationarity
Norden Huang Research Center for Adaptive Data Analysis National Central University
2
Need to define the Degree Stationarity
Traditionally, stationarity is taken for granted; it is given; it is an article of faith. All the definitions of stationarity are too restrictive. All definitions of stationarity are qualitative. Good definition need to be quantitative to give a Degree of Stationarity
3
Definition : Strictly Stationary
4
Definition : Wide Sense Stationary
5
Definition : Statistically Stationary
If the stationarity definitions are satisfied with certain degree of averaging. All averaging involves a time scale. The definition of this time scale is problematic.
6
Degree of Stationarity
7
Degree of Statistical Stationarity
8
An Example Ocean Wind Wave Data
9
Ocean Waves Water waves are nonlinear.
Crests of breaking waves need many harmonics to fit Waves are nonstationary Spectrum full of Harmonics; it is hard to separate free from bound wave energy
10
Ocean Waves : data
11
Ocean Waves : IMF
12
Ocean Waves : Hilbert Spectrum
13
Ocean Waves : Hilbert Spectrum x10
14
Ocean Waves : Hilbert Spectrum x100
15
Ocean Waves : Degree of Stationarity
16
Earthquake Data Chi-Chi, Taiwan September 21, 1999
An Example Earthquake Data Chi-Chi, Taiwan September 21, 1999 Huang, N. E. , et al : A new spectral representation of earthquake data: Hilbert Spectral analysis of station TCU129, Chi-Chi, Taiwan, 21 September 1999, Bulletin of the Seismological Society of America, Volume 91, pp
17
Earthquake Earthquake is definitely transient; therefore, nonstationary. For near field locations, the earth motion is also highly nonlinear. Traditional treatment of earthquake data by response spectral analysis is not adequate.
18
Response Spectrum The response spectrum of a earthquake signal is defined through the maximum displacement of a linear single degree of freedom system with predetermined damping driven by the given earthquake signal. The displacement is given by the Duhamel Integral:
19
Response Spectrum
20
Response Spectrum
21
Response Spectrum As the Duhamel Integral gives a quantity with the dimension of velocity, the response spectrum is also known as the pseudo-velocity spectrum. The linear single degree of freedom system is a linear filter; therefore, There is a definitive relationship between the Fourier Spectrum and Response spectrum.
22
Chi-Chi Earthquake : Data
23
Chi-Chi Earthquake : F & RS ; E
24
Chi-Chi Earthquake : F & RS ; N
25
Chi-Chi Earthquake : F & RS ; Z
26
Chi-Chi Earthquake : Hilbert E
27
Chi-Chi Earthquake : Hilbert N
28
Chi-Chi Earthquake : Hilbert Z
29
Chi-Chi Earthquake : MH & F : E
30
Chi-Chi Earthquake : MH & F : N
31
Chi-Chi Earthquake : MH & F : Z
32
Chi-Chi Earthquake : Hilbert : E200
33
Chi-Chi Earthquake : Hilbert E1000
34
Chi-Chi Earthquake : DS E
35
Chi-Chi Earthquake : DS N
36
Chi-Chi Earthquake : DS Z
37
Chi-Chi Earthquake : DS All
38
Chi-Chi Earthquake : DSS200 All
39
Chi-Chi Earthquake : DSS1000 All
40
Chi-Chi Earthquake : DS
Hilbert spectral analysis reveals a ‘damaging-causing’ low frequency band of energy not properly shown in the Fourier Analysis. The strongest component, EW, is also the most nonstationary one. The weakest component, Z, is also the most stationary one. The Hilbert and Fourier spectra agree well for the most stationary case.
41
Heart Rate Variability : HRV
Normal heart rate is chaotic
42
Quiz on physiologic dynamics
Heart Failure Heart Failure Heart Rate (bpm) Heart Rate (bpm) Normal Atrial Fibrillation Heart Rate (bpm) Heart Rate (bpm) Time (min) Time (min) Loss of dynamical fluctuations is bad Not all dynamical fluctuations are good
43
Heart Rate Variability : 8 hours
44
Degree of Stationarity
45
Data White Noise
46
Data White Noise
47
Degree of stationary for nonlinear data
Inter- and intra-wave modulations
48
Duffing Chip Data
49
Duffing Chip : Hilbert ZC
50
Duffing Chip : Hilbert Quad
51
Duffing Chip : Hilbert Hilbert
52
Duffing Chip : Degree of Stationarity
53
Duffing Chip : Degree of Stationarity
54
Duffing Chip : Normalized Intra-wave Modulation
55
Conclusions The high frequency range of the spectrum is highly intermittent. Even the Statistical Degree of Stationarity cannot smooth the variations. Before invoke the stationarity assumption, we should check the Degree of Stationarity.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.