Download presentation
Presentation is loading. Please wait.
1
Spherical Parameterization and Remeshing Emil Praun, University of Utah Hugues Hoppe, Microsoft Research
2
Motivation: Geometry Images [Gu et al. ’02] 3D geometry completely regular sampling geometry image 257 x 257; 12 bits/channel
3
Geometry Images [Gu et al. ’02] No connectivity to store No connectivity to store Render without memory gather operations Render without memory gather operations –No vertex indices –No texture coordinates Regularity allows use of image processing tools Regularity allows use of image processing tools Motivation: Geometry Images
4
Spherical Parametrization geometry image 257 x 257; 12 bits/channel Genus-0 models: no a priori cuts
5
Contribution Our method: genus-0 no constraining cuts Less distortion in map; better compression New applications: morphing morphing GPU splines GPU splines DSP DSP
6
Process
7
Outline 1.Spherical parametrization 2.Spherical remeshing 3.Results & applications
8
Spherical Parametrization Goals: robustness robustness good sampling good sampling sphere S mesh M [Sander et al. 2001] [Hormann et al. 1999] [Sander et al. 2002] [Hoppe 1996] coarse-to-fine stretch metric coarse-to-fine stretch metric [Kent et al. ’92] [Haker et al. 2000] [Alexa 2002] [Grimm 2002] [Sheffer et al. 2003] [Gotsman et al. 2003]
9
Coarse-to-Fine Algorithm Convert to progressive mesh Parametrize coarse-to-fine Maintain embedding & minimize stretch
10
Before Vsplit: No degenerate/flipped No degenerate/flipped 1-ring kernel Apply Vsplit: No flips if V inside kernel V Coarse-to-Fine Algorithm
11
Before Vsplit: No degenerate/flipped No degenerate/flipped 1-ring kernel Apply Vsplit: No flips if V inside kernel Optimize stretch: No degenerate (they have stretch) V Coarse-to-Fine Algorithm
12
Traditional Conformal Metric Preserve angles but “area compression” Bad for sampling using regular grids
13
Stretch Metric [Sander et al. 2001] [Sander et al. 2002] Penalizes undersampling Better samples the surface
14
Regularized Stretch Stretch alone is unstable Add small fraction of inverse stretch withoutwith
15
Outline 1.Spherical parametrization 2.Spherical remeshing 3.Results & applications
16
Domains And Their Sphere Maps tetrahedron octahedron cube
17
Domain Unfoldings
18
Boundary Constraints
19
Spherical Image Topology
22
Outline 1.Spherical parametrization 2.Spherical remeshing 3.Results & applications
23
Example Results
24
Results
26
David Model courtesy of Stanford University
27
Timing Results Model # faces Time Cow23,216 7 min. 7 min. David60,000 8 min. Bunny69,630 10 min. Horse96,948 15 min. Gargoyle200,000 23 min. Tyrannosaurus200,000 25 min. Pentium IV, 3GHz, initial code
28
Timing Results Model # faces Time Cow23,216 65 sec. David60,000 80 sec. Bunny69,630 1.5 min. Horse96,948 2.5 min. Gargoyle200,000 4 min. Tyrannosaurus200,000 Pentium IV, 3GHz, optimized code
29
Rendering interpret domain render tessellation
30
Level-of-Detail Control n=1 n=2 n=4 n=8 n=16 n=32 n=64
31
Morphing Align meshes & interpolate geometry images
32
Geometry Compression Image wavelets Boundary extension rules Boundary extension rules –spherical topology –Infinite C 1 lattice* Globally smooth parametrization* Globally smooth parametrization* *(except edge midpoints)
33
Compression Results 12 KB3 KB1.5 KB
34
Compression Results
35
Smooth Geometry Images 33x33 geometry image C 1 surface GPU 3.17 ms [Losasso et al. 2003] ordinary uniform bicubic B-spline
36
Summary original spherical parametrization geometry image remesh
37
Conclusions Spherical parametrization Guaranteed one-to-one Guaranteed one-to-one New construction for geometry images Specialized to genus-0 Specialized to genus-0 No a priori cuts better performance No a priori cuts better performance New boundary extension rules New boundary extension rules –Effective compression, DSP, GPU splines, …
38
Future Work Explore DSP on unfolded octahedron 4 singular points at image edge midpoints 4 singular points at image edge midpoints Fine-to-coarse integrated metric tensors Faster parametrization; signal-specialized map Faster parametrization; signal-specialized map Direct D S M optimization Consistent inter-model parametrization
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.