Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wrocław, September 20th, 2010 Mechanism of HCl oxidation (Deacon process) over RuO 2 Gerard Novell-Leruth.

Similar presentations


Presentation on theme: "Wrocław, September 20th, 2010 Mechanism of HCl oxidation (Deacon process) over RuO 2 Gerard Novell-Leruth."— Presentation transcript:

1 Wrocław, September 20th, 2010 Mechanism of HCl oxidation (Deacon process) over RuO 2 Gerard Novell-Leruth

2 The Institute of Chemical Research of Catalonia

3 Scheme Deacon process Ruthenium Oxide Reactivity on RuO 2 (110) Microkinetic analysis Conclusions

4 The Chlorine Tree

5 The Production consumption per weight produced is near to iron and steel production. Chloroalkali process 2 NaCl + 2 H 2 O → Cl 2 + H 2 + 2 NaOH 3600 -3300 kWh / ton of Chlorine Deacon Process 4 HCl + O 2 → 2 Cl 2 + 2 H 2 O

6 Deacon process is: 4 HCl + O 2 → 2 Cl 2 + 2 H 2 O ∆H = -114 kJ/mol Henry Deacon in 1874 (CuO 2 ) CuO 2 at 400-450 ºC Kel-Chlor (NO,NO2, NOCl) Shell-Chlor (CuCl 2 -KCl/SiO 2 ) MT-Chlor (Cr 2 O 3 /SiO 2 ) Chlorine production

7 Deacon process is: 4 HCl + O 2 → 2 Cl 2 + 2 H 2 O ∆H = -114 kJ/mol Henry Deacon in 1874 (CuO 2 ) CuO 2 at 400-450 ºC Kel-Chlor (NO,NO2, NOCl) Shell-Chlor (CuCl 2 -KCl/SiO 2 ) MT-Chlor (Cr 2 O 3 /SiO 2 ) Sumitomo Chemicals RuO 2 /TiO 2 (rutile) High activity Low Temperature (300 ºC) Stability Production of 400 kton per year in a single reactor Chlorine production

8 Scheme Deacon process Ruthenium Oxide Reactivity on RuO 2 (110) Microkinetic analysis Conclusions

9 RuO 2 powder structure (100), (110), (001) and (101) are the common surfaces Show Ru cus atoms: Coordination 5 RuO 2 (110) is the most common surface (110)(101) (100)(001)

10 Different RuO 2 activities Different nature of the exposed sites i.e. nanoparticle structure N. López, J. Gómez-Segura, R. P. Marín, J. Pérez-Ramírez, J.Catal., 255, 2008, 29-39 Faces γ / eV·Ǻ -2 Area / % 1100.04143 1010.05142 1000.04714 0010.075> 1

11 RuO 2 (110) Deacon process is: HCl + ¼ O 2 → ½ Cl 2 + ½ H 2 O RuO 2 (110) is the most common surface

12 RuO 2 (110) Deacon process is: HCl + ¼ O 2 → ½ Cl 2 + ½ H 2 O RuO 2 (110) is the most common surface 5 Layers

13 RuO 2 (110) Deacon process is: HCl + ¼ O 2 → ½ Cl 2 + ½ H 2 O RuO 2 (110) is the most common surface 5 Layers Unit Cell

14 Computational details DFT (VASP) RPBE functional PAW pseudopotentials Cut-off of 400 eV

15 Scheme Deacon process Ruthenium Oxide Reactivity on RuO 2 (110) Microkinetic analysis Conclusions

16 O 2 +2*↔ O 2 ** O 2 **↔2O* HCl+*+O*↔Cl*+OH* OH*+OH*↔H 2 O*+O* H 2 O*↔H 2 O +* Cl*+Cl*↔Cl 2 +2* Common proposed mechanism

17 Oxygen adsorption O 2 +2*↔ O 2 ** O 2 **↔2O* HCl+*+O*↔Cl*+OH* OH*+OH*↔H 2 O*+O* H 2 O*↔H 2 O +* Cl*+Cl*↔Cl 2 +2* O 2 + 2* ↔ O 2c * E ads =-0.66 eV

18 O 2 +2*↔ O 2 ** O 2 **↔2O* HCl+*+O*↔Cl*+OH* OH*+OH*↔H 2 O*+O* H 2 O*↔H 2 O +* Cl*+Cl*↔Cl 2 +2* Oxigen dissociation O 2 ** ↔ 2 O c * E a =0.40 eV  E=-0.41 eV

19 HCl+*+O b * ↔ Cl c *+O b H* HCl+*+O c * ↔ Cl c *+O c H* HCl reaction O 2 +2*↔ O 2 ** O 2 **↔2O* HCl+*+O*↔Cl*+OH* OH*+OH*↔H 2 O*+O* H 2 O*↔H 2 O +* Cl*+Cl*↔Cl 2 +2* 1 reaction 2 configurations

20 HCl+*+O b * ↔ Cl c *+O b H* HCl+*+O c * ↔ Cl c *+O c H* HCl reaction O 2 +2*↔ O 2 ** O 2 **↔2O* HCl+*+O*↔Cl*+OH* OH*+OH*↔H 2 O*+O* H 2 O*↔H 2 O +* Cl*+Cl*↔Cl 2 +2* 1 reaction 2 configurations HCl* + Ob* ↔ Cl* + ObH* HCl* + Oc* ↔ Cl* + OcH* E a < 0.01 eV E a < 0.01 eV  E=-1.46 eV  E=-1.23 eV

21 O c H* + O c H* ↔ O c * + H 2 O c * O b H* + O c H* ↔ O b * + H 2 O c * HCl + *+O c H*↔ Cl*+H 2 O c * O b H*+O c H*↔ H 2 O b *+H 2 O c * O b H*+O c *↔ O b *+O c H* Water formation O 2 +2*↔ O 2 ** O 2 **↔2O* HCl+*+O*↔Cl*+OH* OH*+OH*↔H 2 O*+O* H 2 O*↔H 2 O +* Cl*+Cl*↔Cl 2 +2* 1 reaction 2 configurations

22 O c H* + O c H* ↔ O c * + H 2 O c * O b H* + O c H* ↔ O b * + H 2 O c * HCl + *+O c H*↔ Cl*+H 2 O c * O b H*+O c H*↔ H 2 O b *+H 2 O c * O b H*+O c *↔ O b *+O c H* Water formation O 2 +2*↔ O 2 ** O 2 **↔2O* HCl+*+O*↔Cl*+OH* OH*+OH*↔H 2 O*+O* H 2 O*↔H 2 O +* Cl*+Cl*↔Cl 2 +2* 1 reaction 2 configurations O c H* + O c H* ↔ O c * + H 2 O c * O b H* + O c H* ↔ O b * + H 2 O c * E a = 0.38 eV E a = 0.24 eV  E= 0.24 eV  E=-0.11 eV

23 Water desorption H 2 O c * ↔ H 2 O + * E ads = -0.90 eV O 2 +2*↔ O 2 ** O 2 **↔2O* HCl+*+O*↔Cl*+OH* OH*+OH*↔H 2 O*+O* H 2 O*↔H 2 O +* Cl*+Cl*↔Cl 2 +2*

24 Chlorine formation Cl c * + Cl c * ↔ Cl 2 + 2 * E ads = -1.56 eV O 2 +2*↔ O 2 ** O 2 +2*↔2O* HCl+*+O*↔Cl*+OH* OH*+OH*↔H 2 O*+O* H 2 O*↔H 2 O +* Cl*+Cl*↔Cl 2 +2*

25 Scheme Deacon process Ruthenium Oxide Reactivity on RuO 2 (110) Microkinetic analysis Conclusions

26 O 2 + 2 * ↔ O 2 ** O 2 ** ↔ 2 O c * HCl + * + O b * ↔ Cl c * + O b H* HCl + * + O c * ↔ Cl c * + O c H* O c H* + O b H* ↔ H 2 O c * + O b * O c H* + O c H* ↔ H 2 O c * + O c * O c * + O b H* ↔ O c H* + O b * H 2 O c * ↔ H 2 O + * Cl c * + Cl c * ↔ Cl 2 + 2 * Mechanism and reaction parameters E a / eV ΔE / eV < 0.01 -0.66 0.38 -0.76 < 0.01 -1.46 < 0.01 -1.23 0.38 0.27 0.24 -0.11 0.55 -0.01 0.90 0.90 1.56 1.56 HCl + ¼ O 2 → ½ Cl 2 + ½ H 2 O RuO 2 (110)

27 Microkinetic modeling Differential-Algebraic Equation (DAE) system Temporal evolution of each species + Initial Conditions (P(HCl), P(O 2 )..) O 2 + 2 * ↔ O 2 ** O 2 ** ↔ 2 O c * HCl + * + O b * ↔ Cl c * + O b H* HCl + * + O c * ↔ Cl c * + O c H* O c H* + O b H* ↔ H 2 O c * + O b * O c H* + O c H* ↔ H 2 O c * + O c * O c * + O b H* ↔ O c H* + O b * H 2 O c * ↔ H 2 O + * Cl c * + Cl c * ↔ Cl 2 + 2 *

28 Transition State Theory (r=k·C R ) Static results as “batch reactor” Energy independent of the coverage Initial conditions P(HCl) = 2·10 5 Pa P(O 2 ) = 4·10 5 Pa T = 570 K Microkinetic modeling

29 Results: Cl 2 production vs T and t Initial Conditions: P(O 2 ) = 4·10 5 Pa P(HCl) = 2·10 5 Pa

30 Results: Presure vs Temperature Initial Conditions: P(O 2 ) = 4·10 5 Pa P(HCl) = 2·10 5 Pa Time = 1 s Experimental T regim P(O 2 ) P(HCl) P(Cl 2 ) P(H 2 O)

31 Results: P and Coverage vs time time / s Initial Conditions: P(O 2 ) = 4E5 Pa P(HCl) = 2E5 Pa T = 570 K P(O 2 ) P(HCl) P(Cl 2 ) P(H 2 O) θ(O b H) θ(O b ) θ(Cl c ) θ(O c )

32 Mechanism Our proposed mechanism contains the following elementary steps: O 2 +2*↔2O* HCl+O*+*↔OH*+Cl* OH*+OH*↔H 2 O+O* Cl*+Cl*↔Cl 2 +2* O 2 + 2 * ↔ O 2 ** O 2 ** ↔ 2 O c * HCl + * + O b * ↔ Cl c * + O b H* HCl + * + O c * ↔ Cl c * + O c H* O c H* + O b H* ↔ H 2 O c * + O b * O c H* + O c H* ↔ H 2 O c * + O c * O c * + O b H* ↔ O c H* + O b * H 2 O c * ↔ H 2 O + * Cl c * + Cl c * ↔ Cl 2 + 2 *

33 P(O 2 ) P(HCl) P(Cl 2 ) P(H 2 O) Variations at microkinetic models time / s P(O 2 ) P(HCl) P(Cl 2 ) P(H 2 O) Initial Conditions: P(O 2 ) = 4E5 Pa P(HCl) = 2E5 Pa T = 570 K Full Model Reduced Model

34 Mechanism Our proposed mechanism contains the following elementary steps: O 2 +2*↔2O* HCl+O*+*↔OH*+Cl* OH*+OH*↔H 2 O+O* Cl*+Cl*↔Cl 2 +2* O 2 + 2 * ↔ O 2 ** O 2 ** ↔ 2 O c * HCl + * + O b * ↔ Cl c * + O b H* HCl + * + O c * ↔ Cl c * + O c H* O c H* + O b H* ↔ H 2 O c * + O b * O c H* + O c H* ↔ H 2 O c * + O c * O c * + O b H* ↔ O c H* + O b * H 2 O c * ↔ H 2 O + * Cl c * + Cl c * ↔ Cl 2 + 2 *

35 Scheme Deacon process Ruthenium Oxide Reactivity on RuO 2 (110) Microkinetic analysis Conclusions

36 Conclusion Mechanism of the global process The bridge Oxygen acts as a reservoir of H Microkinetic model with DFT results Discussion of species in the process as function of the reaction conditions

37 Acknowledgements THANKS FOR YOUR ATTENTION !!!


Download ppt "Wrocław, September 20th, 2010 Mechanism of HCl oxidation (Deacon process) over RuO 2 Gerard Novell-Leruth."

Similar presentations


Ads by Google