Download presentation
Presentation is loading. Please wait.
1
C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa VIII SILAFAE VALPARAISO, CHILE, 6-12/ DEC /2010 DETERMINATION OF THE FUNDAMENTAL PARAMETERS OF QCD
2
WHY DO WE NEED THEORETICAL PHYSICISTS TO MEASURE THE QUARK MASSES & THE QUARK- GLUON COUPLING?
3
QUANTUM CHROMODYNAMICS
4
FUNDAMENTAL PARAMETERS OF QCD STRONG COUPLING α s (q 2 ) 1/ ln(-q 2 / Λ 2 ) QUARK MASSES m q (q 2 ) [1/ ln(-q 2 / Λ 2 )] γ A fractal
5
STRONG COUPLING τ → hadrons Z → hadrons e + e - → hadrons etc.
6
→ hadrons (π’s)
9
CURRENT CORRELATOR (GREEN FUNCTION)
11
QUARK-HADRON DUALITY
14
R -ratio
16
hadrons
18
CURRENT VALUES OF α S (q 2 ) α S (M τ 2 ) = 0.342 0.012 (Pich, 2010) α S (M Z 2 ) = 0.1213 0.0014 α S (M Z 2 ) = 0.1231 0.0038 (Bethke, 2010) α S (M Z 2 ) = 0.1183 0.0008 (Lattice, 2010)
19
CONTENTIOUS ISSUE WORK IN PROGRESS
20
QUARK MASSES CPT: Light quark mass ratios Lattice QCD QCD Sum Rules (Operator Product Expansion)
22
NEXT TO LEADING ORDER ONLY ONE PARAMETER-FREE RELATION ( J. Gasser & H. Leutwyler 1985)
23
NEXT TO LEADING ORDER SCALE & RENORMALIZATION CONSTANT(S) DEPENDENT
24
BARYON MASS SPLITTING P. Minkowski & A. Zepeda (1980)
25
Q C D SUM RULES Shifman-Vainshtein-Zakharov (1979)
26
Q C DQ C D
27
HADRONIC
28
CONFINEMENT STRONG MODIFICATION TO QUARK & GLUON PROPAGATORS NEAR THE MASS SHELL INCORPORATE CONFINEMENT THROUGH A PARAMETRIZATION OF PROPAGATOR CORRECTIONS IN TERMS OF QUARK & GLUON VACUUM CONDENSATES
31
QUARK CONDENSATE
34
GLUON CONDENSATE
36
Q C D SUM RULES (SVZ)
37
QUARK-HADRON DUALITY
41
PROBLEM WITH Im П (S)| resonance e + e - hadrons Im П (s)| V τ hadrons Im П (s)| V & Im П (s)| A PSEUDOSCALAR CHANNEL (beyond pole): Not measured & not measurable SYSTEMATIC UNCERTAINTY
42
1980’s – 2007-2008 CAD, Nasrallah, Schilcher (2007) CAD, Nasrallah, Röntsch, Schilcher (2008)
43
INTEGRATION KERNEL Δ 5 (s) Analytic function ds П (s) Δ 5 (s) = 0
45
PURPOSE OF THE INTEGRATION KERNEL ENHANCE / SUPPRESS SPECIFIC CONTRIBUTIONS HADRONIC: resonance region: non-existing experimental data CAUCHY’S THEOREM STILL VALID
46
HADRONIC SPECTRAL FUNCTION Pseudoscalar meson pole (pion, kaon) OK Resonances: (???) τ → hadrons (J P = 0 - ) NOT FEASIBLE
47
PION (KAON) RADIAL EXCITATIONS π (1300): M = 1300 ± 100 MeV Γ = 200 – 600 MeV π (1800): M = 1812 ± 14 MeV Γ = 207 ± 13 MeV K (1460) & K (1830) Γ ≈ 250 MeV
48
SYSTEMATIC UNCERTAINTY MASS & WIDTH OF RESONANCES: NOT ENOUGH TO RECONSTRUCT HADRONIC SPECTRAL FUNCTION !!! HADRONIC BACKGROUND & CONSTRUCTIVE/DESTRUCTIVE INTERFERENCE COMPLETELY UNKNOWN
49
BEST MODEL THRESHOLD CONSTRAINT FROM CHPT 3-PION Pagels & Zepeda (1972) CAD (1984), CAD, de Rafael (1987), CAD, Pirovano, Schilcher (1998)
50
Δ 5 (s) Δ 5 (s) = 1 - a 0 s – a 1 s 2 Δ 5 (M 1 2 ) = Δ 5 (M 2 2 ) = 0
51
Realistic Spectral Function Im Π s ≡ E 2 s0s0
52
S 0 DEPENDENCE PHYSICAL QUANTITIES ARE INDEPENDENT OF S 0 IN PRACTICE : S 0 1 – 3 GeV 2
56
ERROR ANALYSIS Ψ 5 (Q 2 )| RESONANCE : factor 5 smaller than PQCD
57
RESULTS m s (2 GeV) = 102 ± 8 MeV m d (2 GeV) = 5.3 ± 0.4 MeV m u (2 GeV) = 2.9 ± 0.2 MeV (m u + m d )/2 = 4.1 ± 0.2 MeV
58
BARYON MASS SPLITTING P. Minkowski & A. Zepeda (1980))
61
HEAVY QUARKS CHARM & BOTTOM (+) DATA: e + e - → hadrons ( c & b region) (-) Π (s) ≈ 1 + O(α s ) + … + O[α j (m 2 / s) i ]
63
CHARM QUARK MASS m c (3 GeV)| MS-bar KARLSRUHE GROUP: Chetyrkin, Kuhn, Maier, Maierhofer, Marquard, Steinhauser, Sturm CAPE TOWN-MAINZ-VALENCIA: Bodenstein, Bordes, CAD, Penarrocha, Schilcher
65
m c (3 GeV)| MS-bar 986 ± 13 MeV Karlsruhe 1008 ± 26 MeV CPT-Mainz-Valencia 986 ± 6 MeV HPQCD (2010)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.