Download presentation
Presentation is loading. Please wait.
1
Widrow-Hoff Learning
2
Outline 1 Introduction 2 ADALINE Network 3 Mean Square Error 4 LMS Algorithm 5 Analysis of Converge 6 Adaptive Filtering
3
Introduction In 1960, Bernard Widrow and his doctoral student Marcian Hoff introduced the ADALINE (ADAptive LInear NEuron)network and LMS(Least Mean Square) algorithm.
4
Perceptron Network Figure: a=hardlim(Wp+b)
5
ADALINE Network Figure: a=purelin(Wp+b)=Wp+b
6
Single ADALINE
7
decision boundary
8
Mean Square Error
9
Mean Square Error(conti.)
11
Error analysis
12
Error analysis(conti.) d = -2h and A = 2R = 0 definite
13
Example 1
14
Example 1(conti.)
16
Approximate Steepest Descent
17
Approximate Gradient
18
Approximate Gradient(conti.)
20
LMS Algorithm
21
LMS Algorithm (conti.)
22
Example 2
23
Example 2(conti.)
27
Analysis of Convergence
28
Analysis of Convergence(conti.)
30
Example 3
31
Perceptron rule V.S. LMS algorithm
32
Perceptron rule V.S. LMS algorithm(conti.)
35
Adaptive Filtering
36
Tapped Delay Line
37
Adaptive Filter
38
Adaptive Noise Cancellation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.