Download presentation
Presentation is loading. Please wait.
1
A Study of the Bandwidth Management Architecture over IEEE 802.16 WiMAX Student : Sih-Han Chen ( 陳思翰 ) Advisor : Ho-Ting Wu ( 吳和庭 ) Date : 2008.07.25
2
Background and Motivation Proposed QoS System Architecture Call Admission Control (CAC) Pairing CAC Bandwidth Borrowing on CAC level Two Stage Bandwidth Allocation Performance Evaluation Conclusion and Future Work 2008/07/25 Page 2 Outline
3
Fixed WiMAX (Worldwide Interoperability for Microwave Access) Specified by IEEE 802.16 d Wireless MAN Network High transmission rate and coverage (75Mbps,50km) Support QoS Cost saving and easy to deploy Replace last mile (like ADSL) 2008/07/25 Page 3 Background
4
2008/07/25 Page 4 MAC Common Part Sublayer Defines multiple-access mechanism Functions : Connection establishment Connection maintenance Call admission control Bandwidth request Bandwidth allocation Packet scheduling MAC Common Part Sublayer (MAC CPS)
5
2008/07/25 Page 5 IEEE 802.16 TDD Frame Structure
6
2008/07/25 Page 6 Service Classes FeatureApplication UGS (Unsolicited Grant Service) Real Time Constant Bit Rate T1/E1 VoIP rtPS (Real-Time Polling Service) Real Time Variable Bite Rate MPEG video nrtPS (Non-Real-Time Polling Service) Non-Real Time Variable Bite Rate FTP BE (Best Effort) Non-Real Time No QoS guarantee HTTP Email
7
2008/07/25 Page 7 Dynamic Service Establishment
8
IEEE 802.16 only defined the basic QoS signaling architecture. The detail internal algorithm was left as the responsibility of implementers. Call admission control Bandwidth allocation Packet scheduling Pairing connection property Uplink and downlink connections must coexist for many network application. (e.g. VoIP, FTP, P2P…) 2008/07/25 Page 8 Motivation Undefined !!!
9
Background and Motivation Proposed QoS System Architecture Call Admission Control (CAC) Pairing CAC Bandwidth Borrowing on CAC level Two Stage Bandwidth Allocation Performance Evaluation Conclusion and Future Work 2008/07/25 Page 9 Outline
10
2008/07/25 Page 10 Proposed QoS Architecture Two Stage Bandwidth Allocation Core Network Applications Pair Call Admission Control Bandwidth Borrowing Agent Uplink Packet Scheduler Downlink Data Traffic Connection Request Connection Response UGS rtPS nrtPS BE Uplink Data Traffic Two Stage Bandwidth Allocation UGS rtPS nrtPS BE Up Stream (Bandwidth Request) BS SS Downlink Packet Scheduler Down Stream (DL/UL MAP)
11
2008/07/25 Page 11 Pairing Call Admission Control SymbolDefinition Remaining Available System Bandwidth Resource Reserved Bw for Connection, ( X = DL or UL ) Peak Traffic Rate of Connection Request, ( X = DL or UL) Average Traffic Rate of Connection Request, ( X = DL or UL) Min Traffic Rate of Connection Request, ( X = DL or UL)
12
2008/07/25 Page 12 Is UGS? Each Pair Connection Request Is rtPS?Is nrtPS?Is BE? B availabl e >= Y Y Y Y N N N Enable Bandwidth Borrowing ? Y Accept Pair Call N Reject Call N Y Go Bandwidth Borrowing Agent Pairing Call Admission Control
13
2008/07/25 Page 13 Range of Bandwidth Reservation Service Type Upper Bound of Reserved Bandwidth Low Bound of Reserved Bandwidth UGS rtPS nrtPS BE
14
2008/07/25 Page 14 Bandwidth Borrowing on CAC Level Symbol Definition The current reserved bandwidth for connection i The low bound of reserved bandwidth for connection i. Amount of bandwidth are needed to be borrowed from system. In system, How many bandwidth can be borrowed from rtPS, nrtPS and BE individually. (X = rtPS, nrtPS or BE )
15
2008/07/25 Page 15 Operation of Bandwidth Borrowing Calculate the bandwidth that are needed to be borrowed from system In system, the bandwidth can be borrowed from rtPS, nrtPS and BE individually
16
2008/07/25 Page 16 Bandwidth Borrowing Flow Chart Is UGS? Pair Connection Request from CAC Module Is rtPS?Is nrtPS?Is BE? Y Y N N Borrow from existing BE Cons Borrow from existing nrtPS Cons Borrow from existing rtPS Cons Reject Failure Accept Success Y Y Borrow from existing BE Cons Borrow from existing nrtPS Cons Borrow from existing rtPS Cons Reject Failure Success Accept
17
2008/07/25 Page 17 Example of Bandwidth Borrowing (BB) Existing Connections in System CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE100 Kbps50 Kbps 2nrtPS150 Kbps100 Kbps50 Kbps 3rtPS300 Kbps150 Kbps 4rtPS200 Kbps150 Kbps50 Kbps After Bandwidth Borrowing Operation Pairing UGS DSA Total require 160Kbps(80x2) Now System available Bw= 0 Start to BB operations at BS.
18
Existing Connections in System CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE50 Kbps 0 Kbps 2008/07/25 Page 18 Example of Bandwidth Borrowing (BB) Existing Connections in System CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE100 Kbps50 Kbps 2nrtPS150 Kbps100 Kbps50 Kbps 3rtPS300 Kbps150 Kbps 4rtPS200 Kbps150 Kbps50 Kbps After Bandwidth Borrowing Operation Pairing UGS DSA Total require 160Kbps(80x2) Now System available Bw= 0 Start to BB operations at BS. (1)Borrow from exiting BE connections. 160 – 50 = 110 Kbps
19
Existing Connections in System CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE50 Kbps 0 Kbps 2008/07/25 Page 19 Example of Bandwidth Borrowing (BB) Existing Connections in System CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE100 Kbps50 Kbps 2nrtPS150 Kbps100 Kbps50 Kbps 3rtPS300 Kbps150 Kbps 4rtPS200 Kbps150 Kbps50 Kbps After Bandwidth Borrowing Operation Pairing UGS DSA Total require 160Kbps(80x2) Now System available Bw= 0 Start to BB operations at BS. (1)Borrow from exiting BE connections. 160 – 50 = 110 Kbps (2) Borrow from exiting nrtPS connections. 110 – 50 = 60 Kbps 2nrtPS100 Kbps 0 Kbps
20
(3) Borrow 45Kbps from CID3 Borrow 15Kbps from CID4 60 * 150/(150+50) = 45 60 * 50/(150+50) = 15 Existing Connections in System CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE50 Kbps 0 Kbps 2008/07/25 Page 20 Example of Bandwidth Borrowing (BB) Existing Connections in System CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE100 Kbps50 Kbps 2nrtPS150 Kbps100 Kbps50 Kbps 3rtPS300 Kbps150 Kbps 4rtPS200 Kbps150 Kbps50 Kbps After Bandwidth Borrowing Operation Pairing UGS DSA Total require 160Kbps(80x2) Now System available Bw= 0 Start to BB operations at BS. (1)Borrow from exiting BE connections. 160 – 50 = 110 Kbps (2) Borrow from exiting nrtPS connections. 110 – 50 = 60 Kbps 2nrtPS100 Kbps 0 Kbps 3rtPS255 Kbps150 Kbps105 Kbps 4rtPS185 Kbps150 Kbps35 Kbps
21
(3) Borrow 45Kbps from CID3 Borrow 15Kbps from CID4 60 * 150/(150+50) = 45 60 * 50/(150+50) = 15 Existing Connections in System CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE50 Kbps 0 Kbps Accept the Pairing UGS Call 2008/07/25 Page 21 Example of Bandwidth Borrowing (BB) Existing Connections in System CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE100 Kbps50 Kbps 2nrtPS150 Kbps100 Kbps50 Kbps 3rtPS300 Kbps150 Kbps 4rtPS200 Kbps150 Kbps50 Kbps After Bandwidth Borrowing Operation Pairing UGS DSA Total require 160Kbps(80x2) Now System available Bw= 0 Start to BB operations at BS. (1)Borrow from exiting BE connections. 160 – 50 = 110 Kbps (2) Borrow from exiting nrtPS connections. 110 – 50 = 60 Kbps BB Success !!! 2nrtPS100 Kbps 0 Kbps 3rtPS255 Kbps150 Kbps105 Kbps 4rtPS185 Kbps150 Kbps35 Kbps 5UGS80 Kbps 0 Kbps 6UGS80 Kbps 0 Kbps
22
2008/07/25 Page 22 Two Stage Bandwidth Allocation Stage One : Allocate the guaranteed reserved bandwidth for each existing connection at most. Stage Two: Allocate the remaining bandwidth First, satisfy all rtPS connections that require more BW. Final, allocate the remaining BW to nrtPS and BE evenly.
23
2008/07/25 Page 23 Two Stage Bandwidth Allocation
24
Background and Motivation Proposed QoS System Architecture Call Admission Control (CAC) Pairing CAC Bandwidth Borrowing on CAC level Two Stage Bandwidth Allocation Performance Evaluation Conclusion and Future Work 2008/07/25 Page 24 Outline
25
2008/07/25 Page 25 Simulation Environment Values Number of BS1 Number of SS5 - 50 Traffic types generated by each SSUGS, rtPS, nrtPS, BE Total Bandwidth64 Mbps Total Simulation Time1000 Seconds Frame Duration10 ms
26
2008/07/25 Page 26 UGSrtPSnrtPSBE Application VoIPVideo StreamFTPEmail Average Data Rate 64 Kbps DL : 387Kbps UL : 38.7Kbps DL : 320Kbps UL : 32Kbps 192 Kbps Maximum Sustained Traffic Rate 64 Kbps DL : 464.4Kbps UL : 46.44Kbps DL : 384Kbps UL : 38.4Kbps 230.4Kbps Minimum Reserved Traffic Rate 64 Kbps DL : 309.6Kbps UL : 30.96Kbps DL : 256Kbps UL : 25.6Kbps 153.6Kbps Low Bound of Reserved BW Max RateAvg RateMin Rate0 Call Inter Arrival Time 15 Seconds Exponential 37.5 Seconds Exponential 30 Seconds Exponential 10 Seconds Exponential Call Duration 120 seconds Exponential 240 seconds Exponential 60 seconds Exponential 20 seconds Exponential Maximum Latency 20 ms50 ms100 ms400 ms Packet Size 160 Bytes Fixed-Size 64-1518 Bytes Uniform 64-1518 Bytes Uniform 64-1518 Bytes Uniform Packet Inter Arrival Time 20 ms Fixed Period DL : 16.35 ms UL : 163.5ms Fixed Period DL : 20 ms UL : 200ms Fixed Period 33ms Fixed Period Traffic Generation and Simulation Environment
27
Pairing vs NonPairing Call Admission Contro l 2008/07/25 Page 27 Simulation Experiment 1
28
2008/07/25 Page 28 Definition of NonPairing CAC Reject Call
29
2008/07/25 Page 29 Call Blocking Probability Pairing vs NonPairing
30
2008/07/25 Page 30 Call Blocking Probability Pairing vs NonPairing
31
Pairing CAC is better than NonPairing CAC Pairing CAC really achieves higher performance than NonPairing CAC on call blocking probability. What cause NonPairing CAC low performance? The reply connection request is always rejected leading to high blocking probability of NonPairing Type II. So the following next experiment will base on Pairing CAC scheme to study Bandwidth Borrowing scheme continually. 2008/07/25 Page 31 Summary of Experiment 1
32
Based on Pairing Call Admission Control Bandwidth Borrowing vs Non Bandwidth Borrowing 2008/07/25 Page 32 Simulation Experiment 2
33
2008/07/25 Page 33 Call Blocking Probability Using Bandwidth Borrowing (BB)
34
2008/07/25 Page 34 Packet Drop Rate ─ Non BB vs BB
35
Proposed a novel QoS architecture over WiMAX, including : Pairing Call Admission Control (CAC) Bandwidth Borrowing scheme on CAC level Two Stage Bandwidth Allocation Dynamic Downlink and Uplink bandwidth allocation. 2008/07/25 Page 35 Conclusion
36
Different traffic pattern (self-similar traffic) Extent to IEEE 802.16e mobility issue (handover call, signal strength) End to End QoS guarantee (ASN, CSN) Heterogeneous Network (integrated with WiFi, 3G system, or EPON) 2008/07/25 Page 36 Future work
37
Q & A Thanks for Your Attention
38
2008/07/25 Page 38 Worldwide Interoperability for Microwave Access ( WiMAX ) Wi-Fi 802.11a/b/g 802.15.1 Bluetooth 802.15.3 High Speed Wireless PAN Wi-Fi 802.11n Bandwidth 1 Gbps 100 Mbps 10 Mbps 1 Mbps PANLANMANWAN <1m 10m 100m Up to 50Km Up to 80Km WiMAX 802.16 (802.16-2004 & 802.16e) 4G 3G 2.5G IEEE 802.15 IEEE 802.11 IEEE 802.16 3GPP PAN: Personal area networksMAN: Metropolitan area networks LAN: Local area networksWide area networks
39
IEEE 802.16 Operation Mode Page 39 2008/07/25
40
Specify area MAC layer PHY layer Topology of Operation Mode PMP (Point to Multiple Point) Mesh Multiplex TDD FDD 2008/07/25 Page 40 IEEE 802.16 d
41
2008/07/25 Page 41 Bandwidth Request SSs may request bandwidth in 3 ways: Contention-based bandwidth requests (Broadcast Polling or Multicast Group Pollng) Contention-free bandwidth requests (Unicast Polling) Piggyback a BW request message on a data packet
42
2008/07/25 Page 42 Bandwidth Allocation BS grants/allocates bandwidth in one of two modes Grant Per Subscriber Station (GPSS) Grant Per Connection (GPC) How much bandwidth to be granted based on - Requested BW QoS parameters Available resources Grants are realized through the UL-MAP
43
The central concept of the MAC protocol A service flow is a unidirectional flow of packets that is provided a particular QoS. SS and BS provide this QoS according to the QoS parameter set. Existing in both uplink and downlink and may exist without being activated. Must have a 32bit SFID, besides admitted and active status also have a 16-bit CID Page 43 Service Flow 2008/07/25
44
Page 44 Definition of Pairing and Non Pairing CAC
45
2008/07/25 Page 45 Definition of NonPairing CAC Accept Call Round Trip Time: The duration time between admitting Uplink Connection Reqest and BS send out the Downlink Connection Request.
46
2008/07/25 Page 46 Operation of Bandwidth Borrowing (2) If the bandwidth borrowed from every exiting BE connection i is : Else, try to borrow bandwidth from nrtPS after borrowing all bandwidth of
47
2008/07/25 Page 47 Operation of Bandwidth Borrowing (3) If the bandwidth borrowed from every exiting nrtPS connection i is : Else, try to borrow bandwidth from rtPS after borrowing all bandwidth of
48
2008/07/25 Page 48 Operation of Bandwidth Borrowing (4) If the bandwidth borrowed from every exiting rtPS connection i is : Else, Bandwidth Borrowing Fail ! Reject the connection request.
49
2008/07/25 Page 49 Mandatory Packet Scheduling Algorithm Scheduling Service Mandatory Algorithm UGSFirst In First Out (FIFO) rtPSEarliest Deadline First (EDF) nrtPSWeighted Fair Queue (WFQ) BERound Robin (RR)
50
2008/07/25 Page 50 System Model of Simulation Experiment Note : We assume that only SS can send the connection request to BS actively
51
2008/07/25 Page 51 UGSrtPSnrtPSBE Application VoIPVideo StreamFTPEmail Average Data Rate 64 Kbps DL : 387Kbps UL : 38.7Kbps DL : 320Kbps UL : 32Kbps 192 Kbps Maximum Sustained Traffic Rate 64 Kbps DL : 464.4Kbps UL : 46.44Kbps DL : 384Kbps UL : 38.4Kbps 230.4Kbps Minimum Reserve Traffic Rate 64 Kbps DL : 309.6Kbps UL : 30.96Kbps DL : 256Kbps UL : 25.6Kbps 153.6Kbps Accept Call Criteria Max Rate 64Kbps (Max+Avg)/2 DL : 425.7Kbps UL : 42.57Kbps (Avg+Min)/2 DL : 288Kbps UL : 28.8Kbps Min / 2 76.8Kbps Low Bound of Guarantee Bw Max RateAvg RateMin Rate0 Call Inter Arrival Time 15 Seconds Exponential 37.5 Seconds Exponential 30 Seconds Exponential 10 Seconds Exponential Call Duration 120 seconds Exponential 240 seconds Exponential 60 seconds Exponential 20 seconds Exponential Traffic Generation and Simulation Environment
52
2008/07/25 Page 52 UGSrtPSnrtPSBE Maximum Latency 20 ms50 ms100 ms400 ms Schedule Scheme FIFOEDFWFQRR Packet Size 160 Bytes Fixed-Size 64-1518 Bytes Uniform 64-1518 Bytes Uniform 64-1518 Bytes Uniform Packet Fragment80 Bytes240 Bytes120 Bytes Packet Inter Arrival Time 20 ms Fixed Period DL : 16.35 ms UL : 163.5ms Fixed Period DL : 20 ms UL : 200ms Fixed Period 33ms Fixed Period Reserve Bw Per frame (Non Bandwidth Borrowing Mode) 80 Bytes DL : 532.125 B UL : 53.2125 B DL : 360 B UL : 36 B 96 Bytes Traffic Generation and Simulation Environment
53
Performance Metric Call Blocking Probability : Packet Drop Rate : Page 53 2008/07/25
54
Definition of Pairing CAC Accepted : Reject : Master's Defense Page 54 2008/07/25
55
Definition of NonPairing CAC Reject Call Master's Defense Page 55 2008/07/25
56
Definition of NonPairing CAC Master's Defense Page 56 Default RTT of DL connection request : 0.5 seconds Accepted : First Type of Connection Fail : Second Type of Connection Fail : 2008/07/25
57
Page 57 Where is the issue ? Call Blocking Probability - Pairing and NonPairing
58
2008/07/25 Page 58 Call Blocking Probability Non BB vs BB
59
2008/07/25 Page 59 Call Blocking Probability Non BB vs BB
60
Introduction of IEEE802.16 and QoS Proposed QoS System Architecture Call Admission Control (CAC) Pairing CAC Bandwidth Borrowing on CAC level Two Stage Bandwidth Allocation Performance Evaluation Conclusion and Future Work 2008/07/25 Page 60 Outline
61
(3) Borrow 45Kbps from CID3 Borrow 15Kbps from CID4 60 * 150/(150+50) = 45 60 * 50/(150+50) = 15 System available Bw = 0 CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE50 Kbps 0 Kbps Accept the Pairing UGS Call 2008/07/25 Page 61 Example of Bandwidth Borrowing (BB) System available Bw = 0 CIDTypeReserved BW Low Bound of Reserved Bw Credit 1BE100 Kbps50 Kbps 2nrtPS150 Kbps100 Kbps50 Kbps 3rtPS300 Kbps150 Kbps 4rtPS200 Kbps150 Kbps50 Kbps After Bandwidth Borrowing Operation Pairing UGS DSA Total require 160Kbps(80x2) Now System avaible Bw= 0 Start to BB operations at BS. (1)Borrow from exiting BE connections. 160 – 50 = 110 Kbps (2) Borrow from exiting nrtPS connections. 110 – 50 = 60 Kbps BB Success !!! 2nrtPS100 Kbps 0 Kbps 3rtPS255 Kbps150 Kbps105 Kbps 4rtPS185 Kbps150 Kbps35 Kbps 5UGS80 Kbps 0 Kbps 6UGS80 Kbps 0 Kbps
62
2008/07/25 Page 62 Range of Bandwidth Reservation Peak Rate 0 (Peak+Average) /2 (Average+Min) /2 Min/2 Rsv-BE Rsv-rtPS Low Bound Average Rate Rsv-nrtPS Low Bound Min Rate Rsv-BE Low Bound Rsv-nrtPS Rsv-rtPS Rsv-UGS
63
2008/07/25 Page 63 Call Blocking Probability Pairing CAC vs NonPairing
64
2008/07/25 Page 64 NonPairing Call Blocking Probability (UGS) Type I vs Type II
65
2008/07/25 Page 65 NonPairing Call Blocking Probability (rtPS) Type I vs Type II
66
2008/07/25 Page 66 NonPairing Call Blocking Probability (nrtPS) Type I vs Type II
67
2008/07/25 Page 67 NonPairing Call Blocking Probability (BE) Type I vs Type II
68
2008/07/25 Page 68 Bandwidth Borrowing Schemes Service Class of Connection Request Bandwidth Borrowing from the exiting connections in system Scheme_1Scheme_2Scheme_3 UGS BE nrtPSBE nrtPS rtPSBE nrtPS rtPS BE nrtPSBE nrtPS rtPSBE nrtPS nrtPS N/A BE nrtPS BE N/A
69
2008/07/25 Page 69 Pairing Call Blocking Probability (UGS) BB vs NonBB
70
2008/07/25 Page 70 Pairing Call Blocking Probability (rtPS) BB vs NonBB
71
2008/07/25 Page 71 Pairing Call Blocking Probability (nrtPS) BB vs NonBB
72
2008/07/25 Page 72 Pairing Call Blocking Probability (BE) BB vs NonBB
73
2008/07/25 Page 73 Packet Drop Rate (rtPS) BB vs NonBB
74
2008/07/25 Page 74 Packet Drop Rate (nrtPS) BB vs NonBB
75
2008/07/25 Page 75 Packet Drop Rate (BE) BB vs NonBB
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.