Download presentation
Presentation is loading. Please wait.
1
Modeling VoIP in Cognitive Radio Network Students: Taly Sessler038741401 Ben Rubovitch065631475 Ben Rubovitch065631475 Instructor: Boris Oklander Semester: Winter 2010
2
Index 1.Introduction 1.1 VoIP 1.2 Cognitive Radio 1.2 Cognitive Radio 2.Project’s Goals 3. Model Description 4. Simulation design 5. Results 6.Conclusions 7.Summery
3
Introduction to VoIP VVVVoice over Internet Protocol- VoIP is a general term for a family of transmission technologies for delivery of voice communications over IP networks such as the Internet or other packet- switched networks. FFFFlexibility - VoIP can facilitate tasks and provide services that may be more difficult to implement using the PSTN. MMMMany telephone calls over a single channel. SSSSecure calls using standardized protocols. LLLLocation independence. IIIIntegration with other Internet services.
4
Introduction to VoIP Relevant challenges Quality of Service – the network cannot ensure that the data packets are delivered in sequential order, or provide Quality of Service (QoS) guarantees, VoIP implementations may face problems mitigating latency and jitter. Delay Jitter - in the context of computer networks, the term jitter is often used as a measure of the variability over time of the packet latency across a network. Jitter Buffer - Some systems use sophisticated delay- optimal de-jitter buffers that are capable of adapting the buffering delay to changing network jitter characteristics.
5
clustering / dispersion → overflow / time-outs clustering / dispersion → overflow / time-outs Trade-offs management: Delay ↔ Loss Trade-offs management: Delay ↔ Loss Introduction to VoIP
6
Cognitive Radio (CR) is a new wireless communication paradigm. CR characteristics: Based on Software Defined Radio (SDR). CR is aware of its environment and use case. Spectrum Sensing Spectrum Analysis Spectrum Decision Introduction to Cognitive Radio
7
Project Goals Studying VoIP technology with emphasis on Oos aspects Implementation of VoIP CRN Model using MATLAB @ Executing and Performance studying
8
E-model MOS Kλ Delay Loss T Delay Network conditions Delay Loss Codec characteristics Equipment impairment Loss robustness R-Factor jitter buffer codec jitter buffer controller Voice Quality Jitter Buffer Network & Codec System’s Model
9
E-model MOS R-Factor jitter buffer codec jitter buffer controller Voice Quality Jitter Buffer Network & Codec CRN System’s Model CRN
10
E-model MOS Kλ Delay Loss T Delay Network conditions Delay Loss Codec characteristics Equipment impairment Loss robustness R-Factor jitter buffer codec jitter buffer controller Voice Quality Jitter Buffer Network & Codec CRN System’s Model C(t)
11
Spectrum opportunities
12
Network Simulator Performance Studying Scenarios generator MOS Channel State Simulator Adaptive Jitter Buffer Network simulator
13
Channel State Simulator Design Inputs: M – number of channels C i (t) – state of i th channel i=1,2,…,M PU parameters α,β Simulation time Outputs: Channels(t) – state of channels
14
Channel State Simulator Design Change 1: for i = 1:Network.channel_set.M nst = find(Network.channels(i).times > slot(n),1)-1; network_state = network_state + Network.channels(i).state(nst); if isempty(network_state) error('1'); end End Change 2: if network_state == 0 Stream.TOA(id) = -1; else Stream.TOA(id) = Stream.TOC(id)+Session.T_packet*50/network_state; if Stream.TOA(id) < Stream.TOA(id-1) Stream.TOA(id) = Stream.TOA(id-1)+ Session.T_packet/10000; end
15
Design Description using UML tools
16
Class Diagrams
17
Results
18
Results and Conclusions 1.Analytic - AJB 2.AR-1 – re-evaluation 3.AR-N – re-evaluation 4.Constant Delay Jitter Buffer Algorithm Types
19
C=0.1 MOS results (Network.type, participant.type, JBuffer.type) 4321 JBuffer 4321432143214321 participan t Networ k 1 0.839 4 11 0.679 1 0.996 6 0.876 4 0.697 4 1 0.115 6 11 0.736 8 0.996 6 0.933 6 0.774 1 1 0.929 7 11 0.544 1 1 0.846 1 0.728 9 1 0.122 0 11 0.854 7 0.996 6 0.921 7 0.888 2 1 0.939 7 11 0.601 6 0.996 6 0.867 6 0.737 8 1 0.125 8 11 0.926 2 0.996 6 0.937 1 0.9194 3 0.968 5 0.903 0 11 0.648 0 0.996 6 0.839 5 0.660 3 1 0.317 7 1 0.996 2 0.504 1 0.986 6 0.817 0 0.5762 4 1 0.876 2 11 0.578 5 0.996 6 0.876 2 0.717 3 0.991 1 0.122 4 1 0.996 3 0.579 3 0.996 6 0.879 5 0.6679 5 10.856 1 110.539 6 0.996 6 0.884 6 0.610 4 10.111 8 110.743 3 10.9000.7255 6
20
C=2 MOS results (Network.type, participant.type, JBuffer.type) 4321 JBuffer 4321432143214321 participan t Network 0.82500.9665110.64840.99660.88150.71800.99190.112210.99610.63790.99330.82120.6752 1 0.99210.8762110.57270.99660.92850.690210.1190110.58010.99660.76680.6455 2 10.9163110.58510.99660.89320.679210.1224110.52120.99660.83670.6121 3 0.50520.91630.99070.60070.62180.70230.85620.68880.95570.10880.98900.94400.58400.97650.84070.6148 4 0.72470.913010.95890.49090.99660.83440.662810.139410.99250.410710.83250.5148 5 0.91930.946410.99620.59440.99660.82550.670310.108810.99250.34610.99660.78240.4794 6
21
C=5 MOS results (Network.type, participant.type, JBuffer.type) 4321 JBuffer 4321432143214321 participantNetwork 0.70960.983210.72280.69690.99660.85160.75460.98420.125810.98900.63390.99330.81340.61941 0.80140.939710.95160.62600.99660.92030.676610.119010.99270.56190.99660.79340.63832 0.94010.9297110.58330.99660.88570.68530.99220.1190110.55790.99660.87110.62923 0.57400.40460.94110.66660.67710.19390.87910.66910.90150.11900.96110.92590.48180.96320.79510.63794 0.57850.789210.56770.64920.58190.85310.62590.95900.122410.97410.38510.99660.75830.53875 0.67180.963210.54130.59850.99660.88880.66420.99200.11900.98800.99620.43100.99660.71850.56136
22
C=10 MOS results (Network.type, participant.type, JBuffer.type) 4321 JBuffer 4321432143214321 participan t Networ k 0.5862 0.879 5 0.995 4 0.958 8 0.714 2 0.377 9 0.921 9 0.708 8 0.956 8 0.115 6 0.978 6 0.969 8 0.593 4 0.996 6 0.715 1 0.613 3 1 0.6750 0.926 4 0.994 5 0.706 3 0.571 4 0.996 6 0.891 4 0.695 8 0.977 0 0.105 4 0.971 7 0.992 4 0.512 1 0.996 6 0.849 4 0.606 7 2 0.7457 0.789 2 0.994 1 0.996 3 0.575 2 0.996 6 0.891 1 0.661 8 0.991 8 0.136 0 0.994 0 0.985 4 0.508 7 0.996 6 0.795 1 0.572 4 3 0.5615 0.287 6 0.832 5 0.624 0 0.651 1 0.080 2 0.848 7 0.674 2 0.746 0 0.098 6 0.857 1 0.833 3 0.563 0 0.969 8 0.840 5 0.629 8 4 0.4062 0.762 5 0.995 3 0.501 8 0.516 9 0.250 8 0.882 6 0.670 3 0.947 3 0.119 0 0.966 4 0.967 3 0.398 4 0.979 9 0.733 7 0.494 3 5 0.41120.919 7 0.961 1 0.511 4 0.580 4 0.384 6 0.897 1 0.637 0 0.960 6 0.115 6 0.994 2 0.974 2 0.352 9 0.996 6 0.775 1 0.464 4 6
23
C=5, K=0.01, Network type=1 MOS results (Network.type, participant.type, JBuffer.type) 4321 JBuffer 4321432143214321 participa nt Networ k 0.92 85 0.80 0 0.884 6 0.80 0 0.423 0 0.790 6 0.526 3 0.516 1 0.425 0 0.402 9 0.323 0 0.482 1 0.325 2 0.399 3 0.419 3 0.274 1 1
24
C=50, K=10-150 MOS results (Network.type, participant.type, JBuffer.type) 4321 JBuffer 4321432143214321 participantNetwork 0.330 7 0.066 8 0.90040.50550.523800.85110.58580.60860.03070.66660.73970.28570.98320.78060.4963 1 0.342 1 0.3010.97660.57030.63500.82320.68280.80180.06120.96510.89130.34230.99660.83910.4626 2 0.294 1 0.250 8 0.97590.74720.565800.83720.66290.77950.0340.96810.8540.22520.99660.81130.4501 3 0.32 0.240 8 0.95210.55050.73500.87230.73330.84490.03740.96050.85230.38750.99660.69820.4833 4 0.807 0.869 5 0.99550.9890.591300.72480.55260.95450.10840.97820.97790.88880.99660.8950.8228 5 0.821 7 0.969 8 0.99510.99620.520300.79780.63970.99230.12240.99510.99230.77230.99660.91090.8339 6
25
Conclusions -We can see that for each situation there is an algorithm that fits it, but there is no good algorithm for all Network and Participant types. -The use of Algorithm will be done by the state of known factors in the Network and Participant with the use of the tables above
26
Summery 1.In this project we integrated a network simulation that fits better with realistic Network. 2.Upgraded the Jitter Buffer’s algorithm by dumping packets that came later then their successors and simulated a more realistic Time Of Arrival. 3.Generated a table that covers a vast variety of situations which the Jitter Buffer can choose an algorithm from
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.