Download presentation
Presentation is loading. Please wait.
1
Price of Gold and US Dollar Index Dwarakamayi Polakam Jennifer Griffeth Ashley Arlotti Rui Feng Ying Fan Qi He Qi Li Group C Presentation
2
Overview 1 US Dollar Index 1.1 Analysis of DOLLARINDEX 1.2 Analysis of DLNDOLLAR 1.3 AR Model 1.4 Forecasting 3 Relationship Between Gold and US Dollar 3.1 The Cross Correlogram 3.2 Analysis of w and resm (Distributed Lag Model) 3.3 Analysis of DLNGOLD and DLNDOLLAR 3.4 Causality Test 3.5 VAR Analysis 2 Price of Gold 2.1 Analysis of GOLD 2.2 Analysis of DLNGOLD 2.3 AR Model 2.4 GARCH Model 2.5 Forecasting
3
Part 1: US Dollar Index The First Model: DLNDOLLAR
4
1.1 Analysis of DOLLARINDEX (1) Trace
5
1.1 Analysis of DOLLARINDEX (2) Histogram
6
1.1 Analysis of DOLLARINDEX (3) Correlogram
7
1.1 Analysis of DOLLARINDEX (4) Unit Root Test
8
1.2 Analysis of DLNDOLLAR (1) Trace
9
1.2 Analysis of DLNDOLLAR (2) Histogram
10
1.2 Analysis of DLNDOLLAR (3) Correlogram
11
1.2 Analysis of DLNDOLLAR (4) Unit Root Test
12
1.3 AR(1), AR(2) Model (1) Add AR(1) and AR(2)
13
1.3 AR(1), AR(2) Model (2a) Diagnostic - Actual, fitted and residual
14
1.3 AR(1), AR(2) Model (2b) Diagnostic - Correlogram of residuals
15
1.3 AR(1), AR(2) Model (2c) Diagnostic - Histogram of residuals
16
1.3 AR(1), AR(2) Model (2d) Diagnostic - Serial Correlation test on residuals
17
1.3 AR(1), AR(2) Model (2e) Diagnostic - Correlogram of residual squared
18
1.3 AR(1), AR(2) Model (2f) Diagnostic - Heteroskedasticity test
19
1.4 Forecasting (1) Confidence Interval of Two Standard Error
20
1.4 Forecasting (2) Forecast for Next Eight Months
21
Part 2: Price of Gold The Second Model: DLNGOLD
22
2.1 Analysis of GOLD (1) Trace
23
2.1 Analysis of GOLD (2) Histogram
24
2.1 Analysis of GOLD (3) Correlogram
25
2.1 Analysis of GOLD (4) Unit Root Test
26
2.2 Analysis of DLNGOLD (1) Trace
27
2.2 Analysis of DLNGOLD (2) Histogram
28
2.2 Analysis of DLNGOLD (3) Correlogram
29
2.2 Analysis of DLNGOLD (4) Unit Root Test
30
2.3 AR(1), AR(2), AR(7), AR(8), AR(11) and AR(18) Model (1) AIC, SIC, etc for Different Models AICSICHQCDWACPC Serial Correlati on AR(1) AR(2) AR(11)-3.257-3.23-3.2452.000077,8,217,8,14no AR(1) AR(2) AR(7) AR(8) AR(11) AR(18)-3.309-3.254-3.2871.9924195no AR(1) AR(2) AR(7) AR(8) AR(11) AR(18) AR(19)-3.3114-3.2464-3.28581.978217--no AR(1) AR(2) AR(11) MA(7) MA(8) MA(11)-3.228-3.183-3.212.00089829,3535yes AR(1) AR(2) AR(11) MA(7) MA(8) MA(11) MA(29) M,A(35)-3.234-3.17114 - 3.209451.989275--no
31
2.3 AR(1), AR(2), AR(7), AR(8), AR(11) and AR(18) Model (2) Add AR(1), AR(2), AR(7), AR(8), AR(11) and AR(18)
32
2.3 AR(1), AR(2), AR(7), AR(8), AR(11) and AR(18) Model (3a) Diagnostic - Actual, fitted and residual
33
2.3 AR(1), AR(2), AR(7), AR(8), AR(11) and AR(18) Model (3b) Diagnostic - Correlogram of residuals
34
2.3 AR(1), AR(2), AR(7), AR(8), AR(11) and AR(18) Model (3c) Diagnostic - Histogram of residuals
35
2.3 AR(1), AR(2), AR(7), AR(8), AR(11) and AR(18) Model (3d) Diagnostic - Serial Correlation test on residuals
36
2.3 AR(1), AR(2), AR(7), AR(8), AR(11) and AR(18) Model (3e) Diagnostic - Correlogram of residual squared
37
2.3 AR(1), AR(2), AR(7), AR(8), AR(11) and AR(18) Model (3f) Diagnostic - Heteroskedasticity test
38
2.4 GARCH Model (1) Add GARCH
39
2.4 GARCH Model (2a) Diagnostic - Correlogram of residuals
40
2.4 GARCH Model (2b) Diagnostic - Histogram of residuals
41
2.4 GARCH Model (2c) Diagnostic - Correlogram of residual squared
42
2.4 GARCH Model (2d) Diagnostic - Heteroskedasticity test
43
2.5 Forecasting (1) Confidence Interval of Two Standard Error
44
2.5 Forecasting (2) Forecast for Next Eight Months
45
Part 3: Relationship Between Gold and US Dollar
46
3.1 The Cross Section Correlogram
47
3.2 Analysis of w and resm (1) Theoretical Analysis LNGOLD(t) = h 0 LNDOLLAR(t) + h 1 LNDOLLAR(t-1) + h 2 LNDOLLAR(t-2) +…+ e(t) = (h 0 + h 1 Z + h 2 Z 2 +…) LNDOLLAR(t) + e(t) = h(z)LNDOLLAR(t) + e(t) First Difference: DLNGOLD(t) = h(z) DLNDOLLAR(t) + e(t) Fit AR(2) model to DLNDOLLAR, B(z)*DLNDOLLAR = WN(t), B(z)* DLNGOLD(t) = h(z)* B(z)*DLNDOLLAR(t) + B(z)* e(t) W(t) = h(z) * resm + error(t)
48
3.2 Analysis of w and resm (2a) Analysis of w and resm
49
3.2 Analysis of w and resm (2b) Analysis of w and resm with AR terms
50
3.2 Analysis of w and resm (3a) Diagnostic - Actual, fitted and residual
51
3.2 Analysis of w and resm (3b) Diagnostic - Correlogram of residuals
52
3.2 Analysis of w and resm (3c) Diagnostic - Serial Correlation test on residuals
53
3.2 Analysis of w and resm (3d) Diagnostic - Heteroskedasticity test
54
3.3 Analysis of DLNGOLD and DLNDOLLAR (1) Analysis of DLNGOLD and DLNDOLLAR
55
3.3 Analysis of DLNGOLD and DLNDOLLAR (2a) Diagnostic - Actual, fitted and residual
56
3.3 Analysis of DLNGOLD and DLNDOLLAR (2b) Diagnostic - Correlogram of residuals
57
3.3 Analysis of DLNGOLD and DLNDOLLAR (2c) Diagnostic - Serial Correlation test on residuals
58
3.3 Analysis of DLNGOLD and DLNDOLLAR (2d) Diagnostic - Heteroskedasticity test
59
3.4 Causality Test Pairwise Granger Causality Tests Date: 05/31/11 Time: 08:00 Sample: 1973:01 2011:12 Lags: 25 Null Hypothesis:ObsF-StatisticProbability DLNDOLLARINDEX does not Granger Cause DLNGOLD4340.912690.58797 DLNGOLD does not Granger Cause DLNDOLLARINDEX1.550180.04616
60
3.5 VAR Analysis (1a) VAR Analysis DLNGOLDDLNDOLLARINDEX DLNGOLD(-1) 0.185969 0.008348 (0.05448) (0.01922) (3.41364) (0.43432) DLNGOLD(-2) -0.150826 0.025431 (0.05538) (0.01954) (-2.72354) (1.30163) DLNGOLD(-7) 0.112218 0.006677 (0.05538) (0.01954) (2.02625) (0.34176) DLNGOLD(-11) 0.139112-0.022972 (0.05538) (0.01954) (2.51182)(-1.17571) DLNGOLD(-18) -0.111669 0.000383 (0.05360) (0.01891) (-2.08344) (0.02024) DLNGOLD(-19) -0.046602 0.043418 (0.05325) (0.01879) (-0.87519) (2.31119) DLNDOLLARINDEX(-1) -0.156528 0.376342 (0.15434) (0.05445) (-1.01416) (6.91147) DLNDOLLARINDEX(-18) -0.159882 0.120925 (0.16132) (0.05691) (-0.99108) (2.12471)
61
3.5 VAR Analysis (1a) Impulse Analysis
62
3.5 VAR Analysis (1b) VAR Analysis
63
Conclusion
64
Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.