Download presentation
Presentation is loading. Please wait.
1
Recsplorer: Recommendation Algorithms Based on Precedence Mining Aditya Parameswaran Stanford University (Joint work with G. Koutrika, B. Bercovitz & H. Garcia-Molina) 1
2
Applications (Far too many!) 2
3
What’s New? Collaborative filtering Extracting patterns ~10 yrs But not used in recommendations! Challenge: Aggregation & Sparsity Sets, not Sequences Won’t need ratings! Lack of “similar people” 3
4
Motivating Example q1q2q3q4 A : 5B : 5D : 5- A : 1E : 2D : 4F : 3 G : 4H : 2E : 3F : 3 B : 2G : 4H : 4E : 4 A : 5G : 4E : 4- User u1 u2 u3 u4 u Target user G : 4E : 3H : 2 H : 4 G : 4E : 4 G : 4E : 4 H : 2 H : 4 H : 3 Ignore potentially useful information Exploit patterns only among similar users Sparsity of ratings, Few recommendations Recommend 4
5
Motivating Example (contd.) q1q2q3q4 A : 5B : 5D : 5- A : 1E : 2D : 4F : 3 G : 4H : 2E : 3F : 3 B : 2G : 4H : 4E : 4 A : 5G : 4E : 4- User u1 u2 u3 u4 u Target user A : 5D : 5 A : 1D : 4 AD AD AD E : 2F : 3 E : 3F : 3 EF GH D F H Recommend Mine a larger portion of user histories Exploit patterns across all users More and better recommendations User preferences, logical orders, interest evolution H : 2G : 4 H : 4G : 4 How to assign scores? 5
6
Goals Quality of recommendations Not enough! Coverage Goodness Unexpectedness Predictability Not covered in this talk Efficiency 6
7
Precedence Model A prediction problem using conditional probabilities Given A, what is the probability that X will followP[ X | A ] Incorrect! Contains - A X A X X A User Hist u1 u2 u3 u4 u5 P[ X | A ] = 1/3 P[ X | A with no X preceding ] = 1/2 P[X |A X ] 7
8
Algorithm 1: Single Item Max-Confidence Current user’s history U D1D1 D2D2 D3D3 DmDm … X sup(D i, X) θ P[X|D m X ] score(X) = max i P[X | D i X ] 8
9
Current user’s history U D1D1 D2D2 D3D3 DmDm … X score(X) = P[X | U X ] Algorithm 2: Joint Probabilities 9
10
score(X) =P[X | U X ] Current user’s history : U = {D 1, D 2, … D m } Approximating: score(X) = P[X | D 1 X D 2 X … D m X ] score(X) P[X] × Π P[D i X | X] D i in U Algorithm 2: Joint Probabilities (Contd.) 10
11
Current user’s history U D1D1 D2D2 D3D3 DmDm … X score(X) P[X] × Π P[D i X | X] Di in U Top Di in U Algorithm 3: Hybrid 11
12
Evaluation: Methodology Dataset: 7,500 Student transcripts from CourseRank Evaluation Methodology: Input: xHidden: r Metrics: precision@k = fraction of top-k recommendations in r coverage@k = number of users for whom an algorithm generates at least k recommendations System: CourseRank (an educational social site for Stanford) 12
13
Evaluation: Algorithms Popularity Reranked Hybrid Joint Probabilities Single Item Max Confidence Collaborative Filtering Not covered in this talk Joint Probabilities with Support 13
14
Evaluation Support θ =30, I =3 samples, x=14 14
15
Evaluation Support θ =30, I =3 samples, k=2 recommendations 15
16
Evaluation Support θ =30, I =3 samples, k=10 recommendations 16
17
Summary of Contributions Finer-grained precedence model to leverage collective wisdom Higher coverage + precision@k More in paper: other algorithms goodness / unexpectedness optimal thresholds user study 17
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.