Download presentation
Presentation is loading. Please wait.
2
1 Geometrical Transformation
3
2 Outline General Transform 3D Objects Quaternion & 3D Track Ball
4
3 Modeling Transform Specify transformation for objects –Allow definitions of objects in own coordinate systems –Allow use of object definition multiple times in a scene
5
4Overview 2D transformations –Basic 2-D transformations –Matrix representation –Matrix composition 3D transformations –Basic 3-D transformation –Same as 2-D Transformation Hierarchies –Scene graphs
6
5 2-D Transformations
7
6
8
7
9
8
10
9
11
10 2-D Transformations
12
11 Basic 2D Transformations
13
12 Basic 2D Transformations
14
13 Basic 2D Transformations
15
14 Rotation around the origin (2-D)
16
15 Rotation around the origin (2-D)
17
16 Rotation around the origin (2-D)
18
17 Rotation (3-D)
19
18 Rotation (3-D)
20
19 Basic 2D Transformations
21
20 Basic 2D Transformations
22
21 Basic 2D Transformations
23
22 Matrix Representation
24
23 Matrix Representation
25
24 2x2 Matrix
26
25Scaling
27
26 Scaling Around A Point
28
27 2x2 Matrix
29
28 Shear (2-D)
30
29 Shear (3-D)
31
30 2x2 Matrix
32
31 2x2 Matrix
33
32 2D Translation
34
33 Basic 2D Transformations
35
34 Homogeneous Coordinates
36
35 Linear Transformations
37
36 Affine Transformations
38
37 Projective Transformations
39
38 Matrix Composition
40
39 Matrix Composition
41
40 Matrix Composition
42
41 Matrix Composition
43
42 3D Transformations
44
43 Basic 3D Transformations
45
44 Basic 3D Transformations
46
45 GENERAL ROTATION ABOUT ANAXIS An axis in space is specified by a point P and a vector direction. Suppose that we wish to rotate an object about this arbitrary axis.
47
46 Developing the General Rotation Matrix
48
47 Developing the General Rotation Matrix
49
48 Developing the General Rotation Matrix
50
49 Developing the General Rotation Matrix
51
50 Developing the General Rotation Matrix
52
51 Developing the General Rotation Matrix Be careful ………… Z X (+,+) (-,-) In both cases, tan(y/x) are positive. So, we need to carefully choose it by checking the signs of x and y
53
52 Developing the General Rotation Matrix Another problem is: rotation interpolation is not easy and not good reported in many papers.
54
53
55
54
56
55 Angular displacement glRotate( , Ax,Ay,Az) (,n) defines an angular displacement of about an axis u or n for rotating a vector v
57
56 The above formula is a matrix form, so we can use Matrix to compute rotation In above equation, v=(x,y,z) T and n=(a x,a y,a z ) T
58
57
59
58
60
59
61
60
62
61 Inverse Transformation
63
62 Inverse Transformation
64
63 Transform points, lines, planes etc.
65
64 Transforming Normals
66
65 Transformation Hierarchies
67
66 OpenGL transformation Matrices
68
67 OpenGL transformation Matrices
69
68 OpenGL transformation Matrices
70
69 OpenGL transformation Matrices
71
70 Transformation Example 1
72
71 Transformation Example 2
73
72 Transformation Example 2
74
73 Hierarchical Scene Graph This topics will be taught in future or the next semester!!
75
74
76
75
77
76
78
77
79
78
80
79
81
80
82
81
83
82
84
83
85
84
86
85
87
86Applications
88
87 Applications
89
88 Applications
90
89
91
90
92
91
93
92
94
93
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.