Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stellar obliquities in exoplanetary systems

Similar presentations


Presentation on theme: "Stellar obliquities in exoplanetary systems"— Presentation transcript:

1 Stellar obliquities in exoplanetary systems
Josh Winn Massachusetts Institute of Technology Simon Albrecht, Roberto Sanchis-Ojeda, Teruyuki Hirano Andrew Howard, John Johnson, Geoff Marcy Bill Cochran, Dan Fabrycky, the Kepler team

2

3 obliquity (n.) 1 : deviation from parallelism 2 : a deviation from moral rectitude or sound thinking

4 Eccentricity Semimajor axis [AU] Jupiter

5 Disk-planet interactions
Eccentricity Low obliquity Disk-planet interactions Semimajor axis [AU]

6 Disk-planet interactions
Few-body dynamics High obliquity Eccentricity Tidal dissipation Low obliquity Disk-planet interactions Semimajor axis [AU]

7 The Sanchis–Nutzman effect

8 l = 0°

9 l = 0°

10 l = 0°

11 l = 0°

12 l = 0°

13 l = 0°

14 l = 0° l = 100°

15 l = 0° l = 100°

16 l = 0° l = 100°

17 l = 0° l = 100°

18 l = 0° l = 100°

19 l = 0° l = 100°

20 l = 0° l = 100°

21 … The starspot-anomaly pattern reveals the stellar obliquity
Sanchis-Ojeda et al. (2011 a,b) Nutzman, Fabrycky, & Fortney (2011)

22 Corot-2 Nutzman, Fabrycky, & Fortney (2011)

23 Corot-2 l = 5 ± 12° Observed Calculated (l = 0°)
Nutzman, Fabrycky, & Fortney (2011) — see also Désert et al. (2011)

24 HAT-P-11 Sanchis-Ojeda & Winn (2011)

25 Time from midtransit [days]
Sanchis-Ojeda & Winn (2011)

26 Sanchis-Ojeda & Winn (2011)

27 Sanchis-Ojeda & Winn (2011)

28 Christoph Scheiner (1573-1650)

29 The Rossiter-McLaughlin effect
Flux Time The Rossiter-McLaughlin effect

30 The Rossiter-McLaughlin effect
Doppler shift Time The Rossiter-McLaughlin effect

31 The Rossiter-McLaughlin effect
Doppler shift Time The Rossiter-McLaughlin effect

32 The Rossiter-McLaughlin effect
Doppler shift Time The Rossiter-McLaughlin effect

33 The Rossiter-McLaughlin effect
Doppler shift Time The Rossiter-McLaughlin effect

34 The Rossiter-McLaughlin effect
Doppler shift Time The Rossiter-McLaughlin effect

35 Measuring the projected obliquity
Queloz et al. (2000); Ohta, Taruya, & Suto (2005); Gaudi & Winn (2007)

36 Low obliquity HD 189733 l = –1.4° ± 1.1° Winn et al. (2006);
see also Triaud et al. (2009)

37 Moderate obliquity XO-3 l = 37.3° ± 3.0° Hirano et al. (2011);
see also Hébrard et al. (2008), Winn et al. (2009)

38 High obliquity (retrograde)
Winn et al. (2009) Narita et al. (2009) Triaud et al. (2010)

39

40 Valenti & Fischer (2005) Pinsonneault et al. (2001)

41 (Zahn 1977)

42 Problem: Orbit decays on same timescale as realignment

43 Solution: Realign only the convective zone?

44 Reality

45 Constant-Q model

46 Different Q’s for realignment and orbital decay
(D. Lai, in preparation)

47 KOI-63 1.0 M , 1.0 R P = 9.4 days Rp = 6.5 R

48 Prot = 5.4 days ≈ (4/7) Porb

49

50

51 KOI-63

52 Current obliquity measurements

53 Current obliquity measurements
Kepler candidates

54 Current obliquity measurements
Kepler candidates Kepler multi-planet candidates

55 Rossiter-McLaughlin effect
Starspot anomalies Rossiter-McLaughlin effect Rotation-rate statistics (Schlaufman 2010) Gravity darkening (Barnes 2010, Szabo et al. 2011) Rotational Doppler boosting (van Kerkwijk et al. 2010) Spin precession TDVs (Damiani & Lanza 2011) Current obliquity measurements Kepler candidates Kepler multi-planet candidates


Download ppt "Stellar obliquities in exoplanetary systems"

Similar presentations


Ads by Google