Presentation is loading. Please wait.

Presentation is loading. Please wait.

AAE450 Spring 2009 Communications Equipment Horizontal crash Trenten Muller Feb. 19, 2009 [Trenten Muller] [COM]

Similar presentations


Presentation on theme: "AAE450 Spring 2009 Communications Equipment Horizontal crash Trenten Muller Feb. 19, 2009 [Trenten Muller] [COM]"— Presentation transcript:

1 AAE450 Spring 2009 Communications Equipment Horizontal crash Trenten Muller Feb. 19, 2009 [Trenten Muller] [COM]

2 AAE450 Spring 2009 New communication system suitable for all phases All Products by SpaceQuestModelMass (kg)Size (mm)Power (W)VoltageTempPrice ($) AntennaAC-1000.1Φ33 x 44.2NA $10,000 ReceiverRX-2000S0.2135 X 50 X 251.56-16 VDC-30 to 75 C$30,000 TransmitterTX-24000.268 X 35 X 15 37.00 Peak transmission8-32 VDC-20 to 70 C$24,000 ControllerCSC-750.57150 X 100 X 250.509-16 VDC-20 to 60 C$40,000 Total per system1.07 kg 39.00 W Peak transmission$ 104,000.00 Possible Flight controllerIFC-1000.2180 X 150 X 250.33.3 VDC-10 to 60 C$50,000 [Trenten Muller] [COM]

3 AAE450 Spring 2009 Horizontal Sliding  Represents the Lander sliding on Lunar surface without skipping, digging in, or creating a crater immediately upon impact.  Given the unpredictable nature and the long slide distance I would advise against landing with significant horizontal velocity. [Trenten Muller] [COM]

4 AAE450 Spring 2009 Computer Code  clear all  close all  clc   vhor = linspace(0,2500,10000); %horizontal velocity m/s  % vver = linspace(0,50,1000); %vertical velocity m/s  mass = 163.49; %mass of dry lander kg  earthg = 9.80665; %gravitational constant of Earth m/s^2  moong = 1.622; %gravitational constant of moon m/s^2  coeff = 0.18; %coefficient of friction for regolith   normf10 = mass * (moong+10*earthg); %normal force N coming in at 10g  normf15 = mass * (moong+15*earthg); %normal force N coming in at 15g  normf20 = mass * (moong+20*earthg); %normal force N coming in at 20g  ff10 = normf10 * coeff; %frictional force N 10g  ff15 = normf15 * coeff; %frictional force N 15g  ff20 = normf20 * coeff; %frictional force N 20g  horaccel10 = ff10 / mass; %horizontal acceleration m/s^2 10g  horaccel15 = ff15 / mass; %horizontal acceleration m/s^2 15  horaccel20 = ff20 / mass; %horizontal acceleration m/s^2 20g [Trenten Muller] [COM]

5 AAE450 Spring 2009  crashth10 = vhor./ horaccel10; %time for horizontal impact s 10g  crashth15 = vhor./ horaccel15; %time for horizontal impact s 15g  crashth20 = vhor./ horaccel20; %time for horizontal impact s 20g  dist10 = vhor.*crashth10-.5.*horaccel10.*crashth10.^2;  %horizontal distance m 10g  dist15 = vhor.*crashth15-.5.*horaccel15.*crashth15.^2;  %horizontal distance m 15g  dist20 = vhor.*crashth20-.5.*horaccel20.*crashth20.^2;  %horizontal distance m 10g  % crashtv =.01; %estimated time for vertical impact s  % veraccel = -vver./ crashtv; %vertical acceleration m/s^2  % vg = veraccel./ -earthg; %vertical g load   plot(vhor.*10^-3,dist10.*10^-3)  hold on  plot(vhor.*10^-3,dist15.*10^-3,'r')  plot(vhor.*10^-3,dist20.*10^-3,'g')  hold off [Trenten Muller] [COM]

6 AAE450 Spring 2009  legend('10g','15g','20g')  title('skid distance vs. horizontal velocity')  ylabel('distance (km)')  xlabel('horizontal velocity (km/sec)')  grid on  % figure(2)  % plot(vver,vg)  % title('g^,s vs. vertical velocity')  % xlabel('vertical velocity (m/s)')  % ylabel('earth g^,s')  % grid on  % hold on  % plot(vver,15,'r') [Trenten Muller] [COM]

7 AAE450 Spring 2009 References  Creel et al., “Pressurized Lunar Rover,” Dept. of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, May 1992. ~coefficient of friction for Lunar regolith [Trenten Muller] [COM]


Download ppt "AAE450 Spring 2009 Communications Equipment Horizontal crash Trenten Muller Feb. 19, 2009 [Trenten Muller] [COM]"

Similar presentations


Ads by Google