Download presentation
Presentation is loading. Please wait.
1
AAE450 Spring 2009 Communications Equipment Horizontal crash Trenten Muller Feb. 19, 2009 [Trenten Muller] [COM]
2
AAE450 Spring 2009 New communication system suitable for all phases All Products by SpaceQuestModelMass (kg)Size (mm)Power (W)VoltageTempPrice ($) AntennaAC-1000.1Φ33 x 44.2NA $10,000 ReceiverRX-2000S0.2135 X 50 X 251.56-16 VDC-30 to 75 C$30,000 TransmitterTX-24000.268 X 35 X 15 37.00 Peak transmission8-32 VDC-20 to 70 C$24,000 ControllerCSC-750.57150 X 100 X 250.509-16 VDC-20 to 60 C$40,000 Total per system1.07 kg 39.00 W Peak transmission$ 104,000.00 Possible Flight controllerIFC-1000.2180 X 150 X 250.33.3 VDC-10 to 60 C$50,000 [Trenten Muller] [COM]
3
AAE450 Spring 2009 Horizontal Sliding Represents the Lander sliding on Lunar surface without skipping, digging in, or creating a crater immediately upon impact. Given the unpredictable nature and the long slide distance I would advise against landing with significant horizontal velocity. [Trenten Muller] [COM]
4
AAE450 Spring 2009 Computer Code clear all close all clc vhor = linspace(0,2500,10000); %horizontal velocity m/s % vver = linspace(0,50,1000); %vertical velocity m/s mass = 163.49; %mass of dry lander kg earthg = 9.80665; %gravitational constant of Earth m/s^2 moong = 1.622; %gravitational constant of moon m/s^2 coeff = 0.18; %coefficient of friction for regolith normf10 = mass * (moong+10*earthg); %normal force N coming in at 10g normf15 = mass * (moong+15*earthg); %normal force N coming in at 15g normf20 = mass * (moong+20*earthg); %normal force N coming in at 20g ff10 = normf10 * coeff; %frictional force N 10g ff15 = normf15 * coeff; %frictional force N 15g ff20 = normf20 * coeff; %frictional force N 20g horaccel10 = ff10 / mass; %horizontal acceleration m/s^2 10g horaccel15 = ff15 / mass; %horizontal acceleration m/s^2 15 horaccel20 = ff20 / mass; %horizontal acceleration m/s^2 20g [Trenten Muller] [COM]
5
AAE450 Spring 2009 crashth10 = vhor./ horaccel10; %time for horizontal impact s 10g crashth15 = vhor./ horaccel15; %time for horizontal impact s 15g crashth20 = vhor./ horaccel20; %time for horizontal impact s 20g dist10 = vhor.*crashth10-.5.*horaccel10.*crashth10.^2; %horizontal distance m 10g dist15 = vhor.*crashth15-.5.*horaccel15.*crashth15.^2; %horizontal distance m 15g dist20 = vhor.*crashth20-.5.*horaccel20.*crashth20.^2; %horizontal distance m 10g % crashtv =.01; %estimated time for vertical impact s % veraccel = -vver./ crashtv; %vertical acceleration m/s^2 % vg = veraccel./ -earthg; %vertical g load plot(vhor.*10^-3,dist10.*10^-3) hold on plot(vhor.*10^-3,dist15.*10^-3,'r') plot(vhor.*10^-3,dist20.*10^-3,'g') hold off [Trenten Muller] [COM]
6
AAE450 Spring 2009 legend('10g','15g','20g') title('skid distance vs. horizontal velocity') ylabel('distance (km)') xlabel('horizontal velocity (km/sec)') grid on % figure(2) % plot(vver,vg) % title('g^,s vs. vertical velocity') % xlabel('vertical velocity (m/s)') % ylabel('earth g^,s') % grid on % hold on % plot(vver,15,'r') [Trenten Muller] [COM]
7
AAE450 Spring 2009 References Creel et al., “Pressurized Lunar Rover,” Dept. of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, May 1992. ~coefficient of friction for Lunar regolith [Trenten Muller] [COM]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.