Presentation is loading. Please wait.

Presentation is loading. Please wait.

(RADIATION DAMAGE STUDY FOR SPES)

Similar presentations


Presentation on theme: "(RADIATION DAMAGE STUDY FOR SPES)"— Presentation transcript:

1 (RADIATION DAMAGE STUDY FOR SPES)
RDS_SPES PROJECT (RADIATION DAMAGE STUDY FOR SPES) Aldo Zenoni, Brescia University and INFN, Pavia – CERN, February 4th 2015

2 PRESENT PARTNERS OF THE RDS_SPES PROJECT1
SPES Exotic Beams Production Group, LNL, Legnaro L.E.N.A. Laboratory, Pavia University INFN Sezione di Pavia (Department), Pavia University Applied Physics Group and Laboratory of Materials Science and Technology, Brescia University SPES TIS Triga Mark II 1 Project mostly supported by INFN and SPES Project at LNL, Legnaro Aldo Zenoni, CERN,

3 Partner locations (Northern Italy)
UniBS LENA UniPV INFN INFN LNL Legnaro Aldo Zenoni, CERN,

4 SUMMARY Motivations for the RDS_SPES Project
The L.E.N.A. Laboratory at Pavia University (irradiations) The Laboratory of Materials Science and Technology at Brescia University (analysis of materials/components) Possible extensions of the project Conclusions and prospects Cherenkov light Material scientists Aldo Zenoni, CERN,

5 Target & Ion Source complex (TIS) (a technological challenge)
HV 40 kV Ionizer & transfer tube Thermomechanical stresses TIS Heater 2000°C Complicated multistep-process for ion extraction 1013 fissions/s 15 day irradiation 5 year cooling Radioactive ion effusion and diffusion 40 MeV protons 200 mA, 8 kW Highly radioactive environment 200 mm Only automatic handling possible 7 238UCx coaxial disks 1.3 mm thickness 3 graphite dump disks Aldo Zenoni, CERN,

6 Production of neutron rich isotopes by 238U fission (a nuclear reactor environment)
1013 n/(s MeV) 1013 fission/s neutrons gammas 15 days Aldo Zenoni, CERN,

7 Radiation biological hazard TIS bunker at irradiation time (FLUKA)
4 m walls 1 mSv/h vertical plane horizontal plane 3 m ceiling RIB y (cm) proton beam z (cm) neutron dose RIB y (cm) vertical plane proton beam neutron dose 103 Sv/h Aldo Zenoni, CERN, x (cm)

8 Material properties modifications by radiation damage
Some critical TIS components (mainly polymeric materials) Chamber joints (O-rings) Viewport glass and joints Insulators Proton beam joints Chamber handling guides Chamber base insulators Pneumatic motors Electrical motors AC power wire jackets Optical fiber core/cladding Electronic components Safe and stable operation performance must be guaranteed; no manual handling is possible Aldo Zenoni, CERN,

9 The SPES Radioactive Ion Beam (RIB) front-end line
Steerers and triplet of quadrupoles Diagnostic box (FC+BP) Slits and Diagnostic box (BP+FC) Triplet of quadrupoles Wien filter Emittance meter Target-ion source Aldo Zenoni, CERN,

10 Material damage by ionizing radiation and neutrons
Polymeric materials Very sensitive to ionizing radiation > 103 Gy Covalent bonds broken (chain scission) New chemical bonds formed (cross linking, reticulation) Free radical formation Radiation damage affected by temperature, additives, atmospheric conditions (oxygen) Gas H, He formation Irreversible effects – mechanical, chemical, electrical, thermal properties affected Molecular weight, solubility, Young’s modulus, elongation, hardness, embrittlement, viscosity Ceramics, glasses Mechanical properties unaffected when irradiation < 107 Gy and neutron fluences < 1019 n/cm2 Darkening and loss of transparency in glasses Metals and alloys Reasonably unaffected by ionizing radiation Atom displacement by neutron collisions E> 1 keV High neutron fluence needed > 1016 n/cm2 Creation of lattice vacancies and interstitials H and He gas formation, decrease in density Plastic properties markedly affected: yield strength, ultimate tensile strength, elongation, fatigue stress, hardness, impact strength, creep, etc. Damage may be recovered by annealing Thermal neutrons may induce transmutation interstitials vacancies Displacement dynamics Aldo Zenoni, CERN,

11 Material damage by radiation is a long-known technological problem
Space science Nuclear reactor technology Accelerator technology CERN Reports on radiation damage tests; the reference Cable insulating materials; CERN (1979) Thermosetting and thermoplastic resins; CERN (1979) Materials used around high energy accelerators; CERN (1982) Selected electrical insulating materials for HP and HV applications; CERN (1985) Halogen free cable-insulating materials; CERN (1989) Radiation tests at cryogenic temperatures on organic materials for LHC; CERN (1996) Thermosetting and thermoplastic resins composite materials; CERN (1998) Adhesives; CERN (2001) Aldo Zenoni, CERN,

12 Typical report information CERN 82-10 (1982)
(extensive and systematic work) Dose limits are specific to the item tested and to the end-point criteria applied General information on materials: thermoplastic resins Specific information: cable insulation by a supplier Mainly g dose: 95% switched-off reactor Irradiation sources: 7 MW Astra reactor, Austria ( n/(s cm2); 106 Gy/h) ASTRA fuel elements or 60Co source (to avoid activation) (104 Gy/h) CERN accelerators ( Gy/h) TAPIRO fast reactor at ENEA, Italy (1012 n/(s cm2) ) Aldo Zenoni, CERN,

13 Rad-hard study performed on SPES front-end critical components - I
TEFLON and VITON are excluded 15 days operation are foreseen Front-end MCNPX simulation Dose rate Rad dose limit from CERN reports Max operating days before failure Top view Side view Aldo Zenoni, CERN,

14 Rad-hard study performed on SPES front-end critical components - II
PEEK, EPDM, KAPTON, TPE-SBR are used instead of weaker materials SPES Front-end Open questions with existing data : Are irradiation conditions adopted close to reality? (Mainly g dose tested) Are end-point criteria adapted to the item use? Are specific material/component included in the available data? Aldo Zenoni, CERN,

15 Reasons to propose a program for rad-hard tests for SPES front-end
Radiation hardness of materials and components is a critical item for ISOL sources in construction or foreseen (SPES, REX-ISOLDE, ALTO, SPIRAL2, iTHEMBA, EURISOL ….) Data in the literature are somewhat abundant but often not recent New materials, products and suppliers are available and should be tested Specific materials and products utilized in the assembly should be tested in spite of generic materials Existing data mainly refer to gamma ray damage Reliable tests should reproduce as close as possible real operating conditions Specific mechanical, electrical, optical requirements of materials and products should be tested against radiation damage Complex components ad electrical motors or electronic circuits should be tested. Interest for a systematic campaign of rad-hard tests for ISOL sources and other applications has been expressed by a number of potential partners Aldo Zenoni, CERN,

16 The RDS_SPES Project resources
(Radiation Damage Study for SPES) Supported by INFN, Pavia and SPES Project at LNL, Legnaro L.E.N.A. Triga Mark II nuclear research reactor for material and component irradiations at Pavia University Tests of physical and operational properties of materials and components at the Laboratory of Materials Science and Technology at Brescia University Know-how on simulation and transport programs MCNPX, FLUKA, GEANT4, PHITS, in UniBS, LENA, LNL Aldo Zenoni, CERN,

17 Draft research program of RDS_SPES Project
Compilation of materials and products to be rad-hard tested with definitions of the actual mechanical, electrical, optical, operational requirements to be guaranteed Simulation of the radiation fields and cumulated dose expected on the critical SPES Front-end components in the foreseen operational conditions Irradiation campaigns at L.E.N.A. on sample materials and products. Radiation fields as close as possible to the expected ones (neutrons vs gammas). Systematics on adsorbed dose levels. Test of physical and operational properties of irradiated materials and components for different levels of irradiated dose Analysis of the relation between physical properties changes and structural modifications due to radiation damage in materials (mainly polymers) One or two year research program Aldo Zenoni, CERN,

18 L.E.N.A. Laboratory at Pavia University (Laboratorio Energia Nucleare Applicata)
Reactor tank: 1.98 m diameter, 6.4 m height with demineralized water In operation since 1965 Biological shield concrete 1 m thickness Reactor core: 44.6 cm diameter 64,8 cm height TRIGA Mark II pool research reactor light water and HxZr moderated 250 kW steady-state power 90 symmetric holes: fuel elements, control rods, neutron source, irradiation channels Graphite reflector 30 cm thickness Aldo Zenoni, CERN,

19 T.R.I.G.A. Mark II pool research reactor
(Training, Research and Isotope production General Atomics) Vertical cross section Core and in-core irradiating channels biological shielding graphite elements control rods neutron source Central thimble Rabbit Thermalizing column Thermal column Thimble F water pool for large samples fuel elements 20% 235U enriched 92% HxZr Reactor core First core configuration (1965) Aldo Zenoni, CERN,

20 T.R.I.G.A. Mark II pool research reactor
(Irradiation facilities) Radial graphite reflector 30 cm thickness neutron fluxes in n/(s cm2) Rabbit channel (7.40x1012) pneumatic sample extraction Central thimble (1.72x1013) aluminum pipe 3.8 cm diameter Thimble F aluminum pipe 3.8 cm diameter Lazy Susan (2.40x1012) Thermal channel (2.52x1011) 7.0 cm diameter Rotating rack for 80 samples at a time 27 polyethylene vials 0.8 cm diameter 3.0 cm height Aldo Zenoni, CERN,

21 T.R.I.G.A. Mark II pool research reactor
(Irradiation beam ports) neutron fluxes in n/(s cm2) Water pool biological medical applications Ø 20.3 cm Ø 15.2 cm Thermal column (1.19x1010) well thermalized isotropic flux (1.14x1012) Thermalizing column Various levels of thermalization (9,07x109) (1.12x1011) Aldo Zenoni, CERN,

22 T.R.I.G.A. Mark II pool research reactor
(Irradiation fluxes) Irradiation facility Measured flux n/(s cm2) Central thimble (1.72 ± 0.17) 1013 Rabbit channel (7.40 ± 0.95) 1012 Lazy Susan (2.40 ± 0.24) 1012 Thermal channel (2.52 ± 0.36) 1011 Thermal column (1.19 ± 0.08) 1010 (1.14x1012) (9.07x109) (1.12x1011) (1.1x109) Aldo Zenoni, CERN,

23 (Measurement design, irradiations, sample analyses)
The L.E.N.A. Laboratory (Measurement design, irradiations, sample analyses) LENA building LENA staff Present activities: Studies of radioisotope production for medical and industrial applications Trace element search by neutron activation Radiation damage studies on electronic circuits and materials for space and accelerator physics Radiocarbon dating of archeological and historical samples and artifacts Forensic analyses and inquires Collaboration to research projects in medicine (BNCT ) and nuclear and particle physics. Spectroscopy and radiochemistry Aldo Zenoni, CERN,

24 (Mechanical and Industrial Engineering Department)
Laboratory of Materials Science and Technology (LMST) at Brescia University (Mechanical and Industrial Engineering Department) Member of: INSTM (Italian National Consortium of Materials Science and Technology) ESIS (European Structural Integrity Society),Technical Committee 4 (Polymers, Adhesives and Composites) sites.google.com/site/materialssciencetechnologylab/ Main research areas: Development of advanced engineering polymeric materials Mechanics of polymers, composites and nanocomposites Rheology of polymers and polymer-based systems Technology and engineering of plastics products Aldo Zenoni, CERN,

25 LMST equipment and available facilities
(Mechanical tests) Mechanical and rheological tests Universal dynamometer for mechanical testing - Instron Instrumented pendulum for impact tests - Ceast Dynamic dynamometer - Instron Dynamic Mechanical Thermal Analyzer (DMTA) - Polymer Lab Dynamic Mechanical Thermal Analyzer (DMTA) - TA Instruments Instrument for creep tests on polymers Equipment for specimen preparation - Ceast Twin-bore capillary rheometer - Ceast Rotational rheometer - TA Instruments Melt Flow Indexer - Ceast Elongational rheometer Capillary rheometer Dynamic dynamometer Universal dynamometer Aldo Zenoni, CERN,

26 LMST equipment and available facilities
(physico-chemical tests and process design) Physico-chemical and morphologial analyses Differential Scanning Calorimetry (DSC) - Mettler Toledo Modulated DSC - TA Instruments Thermogravimetric Analysis (TGA) - TA Instruments Infrared Spectrometry (FTIR) - Jasco UV-vis Spectrophotometry - Perkin-Elmer Gel Permeation Chromatography (GPC) Gas Chromatography - Perkin-Elmer Standard equipment for synthesis and chemical analyses Travel optical microscope - Leica Access to Scanning Electron Microscopy (SEM) Infrared spectrometer (FTIR) Processing machines Single-screw extruder - Fuji Brabender mixer - Brabender Injection molding machine - Arburg Compression molding machine -Collin Access to compounding machine – Coperion Computer Aided Engineering software analyses Plastic injection molding design software - Moldflow (Autodesk) Multiphysics modeling and simulation software - COMSOL Multiphysics Compression molding machine Aldo Zenoni, CERN,

27 Tests on mechanical and thermal properties of pre and post-irradiated polymeric samples
Tensile tests (mechanical: elastic modulus, tensile strength and elongation at break) Impact tests (mechanical: impact strength) Bending tests (mechanical: flexural strength ) DSC analysis (thermal: glass transition temperature, melting temperature, degree of crystallinity ) Rheological tests (molecular weight, molecular cross-linking, etc.) Infrared analysis (structural analysis) SEM microscopy (structural analysis) Gas chromatography (analysis of evolved gases) Gel permeation chromatography (molecular weight) Swelling test (cross link density) Impact pendulum Calorimeter DSC Test will be performed at LMST in Brescia Polymeric materials should not suffer activation Aldo Zenoni, CERN,

28 Possible extensions of the RDS_SPES Project (Partners)
ALTO Possible partners who expressed interest in the project: Potential partners first meeting ESS (European Spallation Source), Lund, Sweden Lund, ALTO, IPN Orsay, France (radioactive beam production) LNL, Legnaro, CERN, Sources, Targets & Interactions Group, Geneva (Switzerland) CERN, Geneva, iTHEMBA Labs, Western Cape, South Africa (radioactive beam production) To be fixed iTHEMBA Labs The effort could be better aimed and qualified if a larger Collaboration among interested partners will be established, sharing experience, know how and resources Aldo Zenoni, CERN,

29 Three main questions for inorganic materials:
Possible extensions of the RDS_SPES Project (Metals and alloys, Ceramics, electronic circuits) Three main questions for inorganic materials: High irradiation neutron fluences needed to test damage in metals and ceramics; are TRIGA fluxes adequate to needs? A metallurgy test laboratory is needed to perform pre and post irradiation tests on metallic samples Metals may be activated by neutron irradiation, transmutation effects Just an observation: a lot of interest, but lack of background and expertise in the present collaboration Electronic circuits and components: No particular problems; integrated electronics is very sensitive to radiation damage Aldo Zenoni, CERN,

30 Possible answers to questions concerning investigation on inorganic materials: 1), 2)
Are TRIGA fluxes adequate to needs? This has to be verified. Possibly a factor 10 lower than the highest reactor fluxes Consider also that radiation damage and damage evolution can be predicted by computational models to a certain extent. Reliable radiation damage correlation requires integration of theoretical, computational end experimental tools. A metallurgical laboratory is needed to perform the tests The Group of Metallurgy of the Brescia University is interested in a possible collaboration; pre e post irradiation mechanical test on (non activated) metallic samples may be performed in Brescia The same interest has been manifested by the Groups of Metallurgy and Machine Design of the Padua University Aldo Zenoni, CERN,

31 The Laboratory of Metallurgy at the Brescia University
Tests at the Brescia Metallurgy Laboratory All metal plastic properties can be tested: yield strength, ultimate tensile strength, elongation to fracture, fatigue stress, hardness, impact strength, creep, ductility, brittleness, etc. Microindentation and nanoindentation testing equipments are available for non destructive tests Vickers microindenter diecasting plant optical microscopy Aldo Zenoni, CERN, strain machine

32 The Laboratories of Metallurgy and Machine Design at the Padua University
Metallurgy studies performed Neutron damage on microstructure: Tests on mechanical properties: hardness, tensile strength, fatigue, etc Steels and alloys for nuclear reactor use: valve bodies, cooling systems, canisters Optical, SEM, TEM microscopy Hardness measurement instrumentation X ray diffractrometer Corrosion laboratory High temperature fatigue tests Aldo Zenoni, CERN,

33 Possible answers to questions concerning investigation on inorganic materials: 3)
Metals may be activated by neutron irradiation If metallic samples are activated by neutron irradiation, some testing equipment may be installed in the mechanical workshop inside the LENA building If needed and justified, automated “hot cells” may be installed too Rad-waste creation and disposal must be carefully evaluated A list of possible “hot” analysis may be considered and studied on a case by case basis LENA mechanical workshop LENA mechanical workshop Aldo Zenoni, CERN,

34 Conclusions and prospects
We are convinced that the RDS_SPES Project on radiation damage may be a timely and useful initiative for many European (and worldwide) facilities presently in construction in the field of nuclear physics and applications The atouts of the Project are the availability of the LENA Laboratory for irradiations and Materials Science Laboratories to perform pre and post irradiation tests on materials and components Possible collaborations and sharing of experience, knowhow and resources could be strategic to aim the project effort at best. ESS Lund and ALTO Orsay have already expressed their interest in joining the collaboration In next weeks we will start the first campaign of radiation damage study on vacuum O-rings Aldo Zenoni, CERN,

35 SPARE SLIDES Aldo Zenoni, CERN,

36 Materials employed for the simulations
name composition EPDM Etylene-Propylene Diene Monomer rubber PEEK Polyether ether ketone organic thermoplastic polymer PMMA polymethilacrilate Plexiglass, lucite SBR Styrene-butadiene TPE Thermoplastic elastomer VITON Fluoropolymer elastomer TEFLON Politetrafluoretene KAPTON poly-oxydiphenylene-pyromellitimide FPE Fluorinate ethylene propylene Aldo Zenoni, CERN,

37 Materials employed for the simulations
Aldo Zenoni, CERN,


Download ppt "(RADIATION DAMAGE STUDY FOR SPES)"

Similar presentations


Ads by Google