Download presentation
1
Epithermal Deposits
2
Epithermal Systems Low and high sulphidation deposits
3
Submarine Epithermal Systems
4
The significance of Epithermal Deposits as a Gold Resource
5
Distribution of Epithermal Deposits
High Sulphidation Low Sulphidation
6
Surface expression of a low sulphidation epithermal deposit
7
Low Sulphidation Deposits Ore Styles and Alteration Assemblages
8
Low Sulphidation Deposits Fluid Inclusion Temperatures and Salinities
9
Low Sulphidation Deposits Oxygen and Hydrogen Isotopic Data
10
Low Sulphidation Deposits Temperature-pH Conditions
3 KAlSi3O8 + 2 H+ = KAl3Si3O10(OH)2 + 6 SiO2 + 2 K+ oC 500 400 Andalusite Muscovite K-feldspar Kaolinite 300 200 1 2 3 4 5 6 Log mK+/mH+
11
The Low Sulphidation Epithermal – Geothermal Link
Old Faithful, Yellowstone Champagne Pool, New Zealand Wairakei Geothermal Power Plant, New Zealand Up to 90 g/t Au
12
The Low Sulphidation Epithermal – Geothermal Link
13
Geothermal Well Scalings from Cerro Prieto, Mexico
Electrum Sphalerite Chalcopyrite Clark, J.R. & Williams-Jones, A.E., (1990) Analogues of epithermal gold-silver deposition in geothermal well scales: Nature, v. 346, no. 6285, pp
14
Controls on the Solubility of Gold
Au(HS)2- +H H2O = Au + 2H2S +0.25O2 Au(HS)o H2O = Au + H2S +0.25O2 AuCl H2O = Au + 2Cl- + H O2 Williams-Jones et al. 2009
15
A model for the formation of low sulphidation epithermal deposits
Au(HS)2- + H H2O = Au O2 + 2H2S Removed by boiling Magmatic vapour condenses in meteoric water Gold transported as Au (HS)2- Water rises and boils, releasing H2S and destabilizing Au(HS)2- Gold deposits as the native metal
16
Epithermal Systems High sulphidation deposits
17
High Sulphidation Deposits Ore Style and Alteration Assemblages
18
Acid-Sulphate Alteration
Vuggy silica Advanced argillic alteration Pyrite All components of the rock leached leaving behind vuggy silica (pH < 1) Alunite (KAl3(SO4)2(OH)6 Kaolinite (Al2Si2O5(OH)4 Quartz and Pyrite
19
Conditions of Acid-Sulphate Alteration
King et al., 2014
20
The high sulphidation Pascua epithermal deposit, Chile
Chouinard et al., 2005
21
Mineralization at Pascua
22
High Sulphidation Deposits Oxygen and Hydrogen Isotopic Data
23
High Sulphidation Deposits Fluid Inclusion Temperatures and Salinities
24
A Model for the Formation of High Sulphidation Deposits
Cooke and Simmons, 2000
25
Controls on the Solubility of Gold
Au(HS)2- +H H2O = Au + 2H2S +0.25O2 Au(HS)o H2O = Au + H2S +0.25O2 AuCl H2O = Au + 2Cl- + H O2 Williams-Jones et al. 2009
26
Lessons from Indonesia
Sangihe
27
The Sangihe Au-Ag Deposits
Py I Au 1.1 ppm Ag 33 ppm Py II Au 1 ppm Ag 81 ppm
28
Metal zoning in pyrite Copper map for Py II at Sangihe Gold map for
pyrite at Pascua Cu (green) As (blue) maps for pyrite at Pascua
29
The Lycurgus Cup – dichroic glass and nanogold
A possible explanation for “invisible gold” in pyrite – electrostatic attraction of negatively charged nanogold particles to the surfaces of positively charged pyrite Williams-Jones et al. 2009
30
The Sangihe Model King et al.(2014)
31
Kawah Ijen - High Sulphidation Epithermal Deposit in the Making?
Mining sulphur Dacite Dome Alunite/pyrite Acid lake pH 0.5
32
Sulphur condensation and acidity creation 600 oC pH -O.6
4H2O (gas) + 4SO2(gas) = 2S (solid) + 2H2SO4 (gas) H2SO4(aq) = 2H+ + SO42-
33
Sampling the gases Giggenbach bottle New dome Alunite/pyrtite Au?
Gas condenser
34
Residual silica in andesite pillow
Acid Sulphate Alteration at Kawah Ijen Residual silica in andesite pillow Cristobalite-alunite spine Alunite-pyrite alteration Alunite-pyrite vein
35
Distribution of Alteration at Kawah Ijen
Scher et al. (2013)
36
Gold Silver mineralisation at Kawah Ijen
Sangihe Kawah Ijen
37
Solubility of Silver in HCl-H2O Vapour
Silver solubility increases with hydration Migdisov and Williams-Jones (2013)
38
Epithermal Au Ore Formation
Vapour-dominated hydrothermal plume rises from magma transporting Au and depositing it as temperature drops below 400C Hurtig and Williams-Jones (2014)
39
References Chouinard, A., Williams-Jones, A.E., Leonardson, R.W., Hodgson, C.J., Silva,P., Téllez, C, Vega, J., and Rojas, F., 2005a, Geology and genesis of the multistage high-sulfidation epithermal Pascua Au-Ag-Cu deposit, Chile and Argentina: Econ. Geol., v. 100, p. 463–490. Clark, J.R. and Williams-Jones, A.E., (1990) Analogues of epithermal gold-silver deposition in geothermal well scales: Nature, v. 346, no. 6285, pp Cooke, D.R, Simmons, S.F., Characteristics and genesis of epithermal gold deposits. In: Hagemann, S.G., Brown, P.E. (Eds.), Gold in 2000, Reviews in Econ. Geol. vol. 13. Society of Economic Geology, Boulder, CO, pp. 221–244. Williams-Jones, A.E. and Heinrich, C.H., 2005, Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits: Econ. Geol., 100, p King, J., Williams-Jones, A.E., van Hinsberg, V., and Williams-Jones, G. High sulfidation epithermal pyriote-hosted Au (Ag-Cu) ore formation by condensed magmatic vapors on Sangihe Island, Indonesia: Economic Geology, v. 109, p
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.