Download presentation
Presentation is loading. Please wait.
1
KEYSTONE PREPARATION TUTORING
Module A Cells and Cell Processes
2
Unit 1 Basic Biological Principles
BIO.A.1.1.1 Describe the characteristics of life shared by all prokaryotic and eukaryotic organisms. BIO.A.1.2.1 Compare cellular structures and their functions in prokaryotic and eukaryotic cells. BIO.A.1.2.2 Describe and interpret relationships between structure and function at various levels of biological organization (i.e., organelles, cells, tissues, organs, organ systems, and multicellular organisms).
3
Unifying Characteristics of Life
Introductory Video Shared characteristics: Obtaining and using energy Maintaining a stable internal state The ability to grow The ability to reproduce Responding to stimuli in the environment Have genetic material
4
Prokaryotic and Eukaryotic Cells
Differences: Size Complexity Similarities Cytoplasm Ribosomes DNA Plasma membrane
5
Cell Parts Challenge: Do you know the animal organelles?
Set up a piece of paper #1-8 T. Trimpe
6
1 8 2 3 7 6 4 5 Label the parts of the cell. Cytoplasm Cell membrane
Golgi Body Lysosome Endoplasmic Reticulum Nucleus Mitochondria Ribosome 1 8 2 3 7 6 4 5 Image:
7
1 8 2 3 7 6 4 5 The answers are … 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 –
Cell membrane Endoplasmic Reticulum Nucleus Ribosome Lysosome Mitochondria Golgi Body Cytoplasm 1 8 2 3 7 6 4 5
8
Cell Parts Challenge: Do you know the plant organelles?
Set up a piece of paper #1-8 T. Trimpe
9
Label the parts of the cell.
Cytoplasm Cell Wall Vacuole Endoplasmic Reticulum (ER) Nucleus Mitochondria Cell Membrane Chloroplast 1 2 3 5 7 6 8 4 Image:
10
Endoplasmic Reticulum (ER)
The answers are … Vacuole 1 2 3 5 7 6 8 Cytoplasm Chloroplast Mitochondria Nucleus Cell Wall 4 Endoplasmic Reticulum (ER) Cell Membrane
11
Organization of Multicellular Organisms
An organism’s cells make up its tissues. Tissues compose organs. Different organs work together as organ systems.
12
Organization (cont.) Differentiated cells are specialized to perform particular functions within a multicellular organism. Can you identify these cells? Red Blood Cells Nerve Cells
13
#6 Refer to the diagram above to answer the following questions
A. Identify structure 1 and describe its main function Structure 1 is the cell wall and its role is to support and provide protection for the cell. B. Identify structure 3 and describe its main function. Structure 3 is the central vacuole and its role is to store water and nutrients
14
C. A wilted houseplant is watered
C. A wilted houseplant is watered. Explain how structures 1 and 3 work together to cause change in the plant A plant wilts because it has lost water when the plant is watered the water is stored in the central vacuole and this organelle expands. This place pressure against the cell wall, which remains rigid. This pressure within the plant cell causes the plant to remain upright.
15
4. A Describe how the function of the contractile vacuole helps the protist stay alive
The function of the contractile vacuole is to maintain water balance in the organism. B. Describe how the same function is carried out in animals. Identify at least one organ or system involved in its function. The kidneys of the excretory system carry out the same function in animals. Cells release metabolic wastes into the bloodstream and the circulatory carried these wastes to kidneys. There the blood is filtered and wastes form urine, which is excreted from the body.
16
c. Describe how the same (or a similar) function is carried out in plants . Identify at least one organ, structure, or cell type involved in this function The Stomata of plant leaves carry out similar function in plants. The stomata close to keep water vapor from escaping the leaves. When the stomata open, gas exchange may occur in the leaf but water vapor may also escape.
17
5A Describe how the structure of arteries are specialized for their particular function.
The structure of the artery allows it to withstand, the force of the blood pumped from the heart. The artery’s thick wall of smooth muscle tissue and the elastic membrane enable it to carry a changing volume of blood under high pressure
18
B. Describe how the structure of veins are specialized for their particular function
The structure of the veins allows it to move blood collected from capillaries toward the heart. Because blood is not forced through the vein, it has a thinner wall of smooth muscle than the artery. The vein’s valves prevent blood from moving backward and keep it flowing toward the heart.
19
C. Describe how the function of capillaries is made possible by their structure
The microscopic size and complex branching of the capillaries allows them to reach all the cells of the body and allows materials to be exchanged between these cells and the bloodstream.
20
Unit 2 The Chemical Basis for Life
BIO.A.2.1 Describe the unique properties of water and how these properties support life on Earth (e.g., freezing point, high specific heat, cohesion). BIO.A.2.2.1 Explain how carbon is uniquely suited to form biological macromolecules. BIO.A.2.2.2 Describe how biological macromolecules form from monomers. BIO.A.2.2.3 Compare the structure and function of carbohydrates, lipids, proteins, and nucleic acids in organisms.
21
Unique Properties of Water
A water molecule is made of 2 hydrogen atoms and 1 oxygen atom and is held together by a covalent bond. Water is POLAR! It has a negative (-) oxygen region and a positive (+) region. These charges create hydrogen bonds between molecules. Opposite attract so water molecules ‘stick’ together. This is called COHESION.
22
Cohesion vs. Adhesion Cohesive molecules ‘stick’ or are attracted to themselves. This builds up SURFACE TENSION which is like a thin film on top of a body of water. Adhesion is when water can ‘stick’ or is attracted to something other than itself. Like cohesion, adhesive forces are created by hydrogen bonding between molecules.
23
Capillary action Capillarity is the ability of a liquid to flow against gravity in a narrow space. It requires both cohesive AND adhesive forces.
24
Capillary Action in Plants
25
Let’s Review Properties of Water
Crash Course Water Important Properties: Polarity Cohesion Adhesion Specific heat (Heat Capacity) Heat of vaporization (evaporation) Heat of fusion (freezing) Density and freezing point pH
26
Organic Molecules CARBON! There are 4 macromolecules
Makes up to 4 covalent bonds. Includes single, double, and triple bonds. Macromolecules Made of chains/rings of smaller molecules Always has CHO! (Carbon, hydrogen, & oxygen) There are 4 macromolecules Lipids Carbohydrates Proteins Nucleic Acids
27
Lipids NONPOLAR (repels water molecules)
Examples: fat, oil, wax, and sterols (cholesterol/hormones) Structure Looks like an ‘E’ Glycerol Fatty acids Function STORES energy Cell/plasma membrane Insulation Send messages/signals
28
Carbohydrates Examples: Structure Function sugar (-ose)
starch (glycogen) cellulose (fiber from plants). Structure Have more oxygen atoms than lipids. Chains of rings! Monomers make polymers Hydroxyl group (-OH) Function Glucose is a reactant in cell’s for respiration. Main source of ENERGY. Substitute for bones in plants. Help plants stand up straight.
29
Dehydration Synthesis vs. Hydrolysis
Dehydrate- “remove water” Synthesis’ “to make” Joins monomers together by REMOVING a molecule of water. Hydrolysis Hydro- “water” Lysis- “to break” Breaks apart polymers by ADDING a molecule of water.
30
Nucleic Acids Examples: DNA and RNA Structure Function Nucleotides
A, C, G, T (U) Sugar (deoxyribose or ribose) CHO + Phosphate + Nitrogen Function Encodes genetic information for the cell: Heredity Protein Synthesis
31
Proteins Structure Function Made of amino acids (20) CHO + Nitrogen
Amine and carboxyl groups Peptide bonds joins amino acids by mean of dehydration synthesis. Function Makes cell parts/organelles Animal structures (hair, nails, muscle tissue) Makes channels that allow things to enter or leave the cell. ENZYMES!
32
Let’s Review Macromolecules!
The Molecules of Life Important points: ALL macromolecules are made of Carbon, Hydrogen, and Oxygen. Some macromolecules have nitrogen and phosphate. Macromolecules have many important “groups”. Hydroxyl (-OH) -Phosphate (-PO3) Carboxyl (-COOH) -Amino (-NH2)
33
Enzymes! BIO.A.2.3.1 Describe the role of an enzyme as catalyst in regulating a specific biochemical reaction. BIO.A.2.3.2 Explain how factors such as pH, temperature, and concentration levels can affect enzyme function.
34
Enzymes Special proteins that catalyze, or speed up the rate of a chemical reaction. Catalysts (enzymes) work on substrates to break them apart at their active site. The enzymes do NOT get used up in the process. Enzymes can only break apart SPECIFIC substrates like a specific key can only open a particular lock. Changes in temperature and pH can effect the function of enzymes and make them slow down or stop working.
35
Enzyme Activity Video on Reaction Rate ( use bozeman instead)
Optimum reaction rate Factors that affect reaction rate: Temperature pH Substrate Concentration
36
Keystone Review # 5 pg 32 A tree absorbs water from its roots and loses water that evaporates from leaves. Inside the tree, capillary action allows water to flow upwards through tissue called xylem, which is composed of tubes made from cell walls.
37
A. Identify and explain how two properties of water contribute to capillary action within the xylem.
Answer: A combination of cohesion and adhesion contribute to capillary action within the xylem. The transport of water begins when water evaporates from the inside of a leaf. Due to cohesion between water molecules, adjacent water molecules are pulled along to replace the evaporated molecules. Cohesion causes all water molecules down to the roots to be pulled upward. The adhesion of water molecules to plant cell walls, due to hydrogen bonding, helps water to resist the downward pull of gravity, holding it in place
38
B. A tree can experience cavitation, which occurs when a bubble of air forms inside a xylem tube. Explain how cavitation affects a tree’s ability to conduct water. Cativation
39
Keystone review Lipids, such as fats and oils, play important roles in living organisms. Carbohydrates also carry out essential functions in living things. A. Describe the general structure of a fat or oil molecule. B. Describe how the structures of fats and oils differ from the structure of carbohydrates. C. Describe how the function of fats and oils is similar to a function of carbohydrates.
40
Answer A. Made up of carbon, hydrogen, and oxygen. Three fatty acid chains attached to a molecule of glycerol.
41
Answer B. Also made up of Carbon, Hydrogen, and oxygen but in a 1:2:1 ratio. Lipids are mostly Carbon and hydrogen with few oxygen. Carbohydrates have monomers (glucose) and polymers (cellulose) while lipids do not have monomers.
42
Answer C. Fats and oils store energy while carbohydrates are used to make energy.
43
Unit 3 Bioenergetics BIO.A Describe the fundamental roles of plastids (e.g., chloroplasts) and mitochondria in energy transformations. BIO.A Compare the basic transformation of energy during photosynthesis and cellular respiration. BIO.A Describe the role of ATP in biochemical reactions.
44
ATP and Cellular Respiration
ATP – (Adenosine Triphosphate) is a small, soluble molecule that provides energy to reactions throughout the cell. The bond that attached the last phospate group to the ATP molecule releases energy when broken.
45
Cellular Respiration Cellular Respiration is the process that breaks down organic molecules, such as glucose, that originate in food. Overall Equation: 6O2 + C6H12O6 6CO2 + 6H2O + energy Or Oxygen + glucose carbon dioxide + water energy
46
Aerobic vs. Anaerobic Respiration
Aerobic means “requiring oxygen” Breaks down glucose and oxygen to form carbon dioxide and water Anaerobic means “ not requiring oxygen” An example is fermentation which is used to make alcohol and bread.
47
Aerobic Cellular Respiration
Stages of Cellular Respiration Occurs in Number of ATP Per Glucose 1. Glycolysis Cytoplasm 2 2. Krebs Cycle (Citric Acid Cycle) Mitochondrial Matrix 3. Electron Transport Chain Inner Membrane of Mitochondria 32-34 Total = 36-38
48
Can you identify the stage of cellular respiration
4 7 1 5 2 Grand total 3 6 8
49
7. Electron Transport Chain
4. Krebs Cycle 1. Glycolysis 7. Electron Transport Chain 2. Cytoplasm 5. Mitochondria Grand total of 36-38 3. Total of 2 6. Total of 2 8. Total of 32-34
50
Photosynthesis Photosynthesis is a process that coverts light energy from the sun into chemical energy stored in compounds such as glucose
51
The Reactions of Photosynthesis
Remember it all occurs in the chloroplast. Thylakoids – sac-like photosynthetic membranes inside chloroplasts, arranged in stacks called grana Photosystems – clusters of pigments in thylakoid Stroma – region outside of the thylakoid membrane (Calvin Cycle takes place)
52
The two stages of Photosynthesis
Stage 1 - light-dependent reactions Uses chlorophyll in the thylakoid membranes Captures the energy from sunlight to produce ATP Splits water molecules need for the next stage Release Oxygen gas from the leaf Stage 2 – light –independent reactions (calvin cycle) Takes place in the stroma Depends on energy from the light reactions Converts CO2 into organic molecules such as glucose
53
Can you identify the stage of photosynthesis?
5 2 1 3 6 4 7
54
2 5 1 3 6 4 7
55
Unit 4 – Homeostasis and Transport
BIO.A Describe how the structure of the plasma membrane allows it to function as a regulatory structure and/or protective barrier for a cell. BIO.A Compare the mechanisms that transport materials across the plasma membrane (i.e., passive transport—diffusion, osmosis, facilitated diffusion; and active transport—pumps, endocytosis, exocytosis). BIO.A Describe how membrane-bound cellular organelles (e.g., endoplasmic reticulum, Golgi apparatus) facilitate the transport of materials within a cell. BIO.A Explain how organisms maintain homeostasis (e.g., thermoregulation, water regulation, oxygen regulation).
56
The Phospholipid Bilayer
Plasma membrane aka the cell membrane consists of two layers of phospholids. Phospholipid head is polar which is hydrophilic Two tails are nonpolar which is hydrophobic
57
Concentration Concentration refers to the amount of a substance dissolved in a given volume of water. Concentration Gradient is the gradient is the distribution of particles across space from high to low concentration
58
Diffusion Primary means of cell transport
Requires no energy - molecules move from high to low concentration - movement continues with the gradient until the molecules are evenly distributed until equilibrium is achieved
59
Passive Transport Energy for passive transport comes from the molecules themselves In passive transport, molecules move with the concentration gradient - move from high concentration to low concentration
60
Facilitated Diffusion
Particles move with the concentration gradient across a transport protein in the membrane Transport proteins is a protein built into the plasma membrane that helps certain kinds of molecules or ions pass through
61
Osmosis The diffusion of water across a selectively permeable membrane
- water moves from where there is more water to where there is less water - water moves toward higher conc. of dissolved material - solute
62
Do you remember which one is hypertonic, which one is hypotonic, and which one isotonic
63
Active Transport Requires energy (ATP) because it goes from low concentration to high concentration. Small molecules or ions across the membrane is carried out by transport protein and “pumps”. Large molecules can cross the membrane by endocytosis and exocytosis.
64
Sodium Potassium Pump The protein “pumps” the sodium ion (Na+) out of the cell and potassium (K-) into the cell. ATP provides the energy that keep the pumps working. Is needed for the electrical impulse nerves
65
Types of Active Transport
Endocytosis is how large molecules get into the cell. The cell membrane surrounds the molecule and encloses it in a vacuole. Phagocytosis - food Pinocytosis – fluids Exocytosis is how waste or other proteins are removed from the cell Golgi Body helps in this process.
66
On back: Define – Hypotonic, Isotonic and Hypertonic
67
Homeostasis Homeostasis is the maintenance of a constant internal state; where water, glucose, oxygen, pH and temperature are regulated and maintained in specific ranges.
68
Negative Feedback Loops
Any change to a system causes the system to return to its original state. Example is regulating body temperature Thermoregulation Is the regulation of body temperature
69
Positive Feedback Loop
Amplifies a change to the system, causing it move farther and farther from its original state.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.