Presentation is loading. Please wait.

Presentation is loading. Please wait.

Univariate Survival Analysis Prof. L. Duchateau Ghent University.

Similar presentations


Presentation on theme: "Univariate Survival Analysis Prof. L. Duchateau Ghent University."— Presentation transcript:

1 Univariate Survival Analysis Prof. L. Duchateau Ghent University

2 Model specification  Most survival models are defined in terms of the hazard with the hazard at time t for subject i the baseline hazard at time t the incidence vector for subject i the parameter vector

3 Hazard function  Density function  Cumulative distribution function  Survival function  Hazard function

4

5 Alternative models  Hazard model: Baseline hazard function parametric Baseline hazard function unspecified Summary measure: hazard ratio  Accelerated failure time (AFT) model: Typically parametric Summary measure: accelerator factor

6 Parametric hazard model: Analytical solution  Assume constant baseline hazard (exponential lifetimes) with only control and treated group with = 0 for control and =1 for treated  Likelihood for exponential:

7 Likelihood specification constant hazard  Define as number of events in treated (control) group and  Define as at risk time in treated (control) group and

8 Solution from likelihood specification  Maximise the log likelihood function leading to

9 Analytical solution reconstitution data #The analytical solution DT<-sum(stat[trt==1]); DC<-sum(stat[trt==0]); yT<-sum(timerec[trt==1]);yC<-sum(timerec[trt==0]); lambda<-DC/yC;HR<-(DT/yT)/(DC/yC) lambda;HR

10 Exercise Obtain the analytical solution for the diagnosis data set First rework the data: #Read the data diag<-read.table("timetodiag.csv",header=T,sep=";") #Create 5 column vectors, five different variables timetodiag<-c(diag$t1,diag$t2) stat<-c(diag$c1,diag$c2) technique<-c(rep(0,106),rep(1,106)) dogid<-c(diag$dogid,diag$dogid) diagnosis<- data.frame(dogid=dogid,technique=technique,timetodiag=t imetodiag,stat=stat)

11 Variance of the estimates?  Obtain the Hessian, i.e., the matrix of the second derivatives of the log likelihood which is  The information matrix is then

12 Inverse of observed information matrix  The observed information matrix is thus and the asymptotic variance-covariance matrix is

13 Variance estimators #The observed information matrix I<-matrix(data=c((DT+DC)/(lambda^2), yT*HR,yT*HR,lambda*yT*HR), nrow = 2, ncol = 2) V<-solve(I) V;sqrt(V) [,1] [,2] [1,] 0.0006494837 -0.003003433 [2,] -0.0030034326 0.026234568 [,1] [,2] [1,] 0.02548497 NaN [2,] NaN 0.1619709

14 Exercise Obtain the asymptotic variance estimates for the parameters of the diagnosis data set

15 Maximizer solution reconstitution data #(negative) loglikelihood exponential with l=exp(p[1]), beta=p[2] loglikelihood.exponential<-function(p){ cumhaz<- exp(p[1])*timerec*(exp(p[2]*trt)) hazard<-stat*log(exp(p[1])*exp(p[2]*trt)) loglik<-sum(hazard)-sum(cumhaz) -loglik} #Apply minimizer to minus loglikelihood function res<-nlm(loglikelihood.exponential,c(-1,0)) res;lambda<-exp(res$estimate[1]);HR<- exp(res$estimate[2]) lambda;HR

16 Variances from maximizer solution #Apply minimizer to obtain Hessian matrix res<-nlm(loglikelihood.exponential,c(-1,0),hessian=T) solve(res$hessian) [,1] [,2] [1,] 0.01388753 -0.01388753 [2,] -0.01388753 0.02623197

17 Use parameters of interest as input #(negative) loglikelihood exponential with l=p[1], HR=p[2] loglikelihood.exponentialHR<-function(p){ cumhaz<- p[1]*timerec*(exp(log( p[2])*trt)) hazard<-stat*log(p[1]*exp(log(p[2])*trt)) loglik<-sum(hazard)-sum(cumhaz) -loglik} #Apply minimizer to obtain Hessian matrix res<- nlm(loglikelihood.exponentialHR,c(lambda,HR),hessian=T,iterl im=1) solve(res$hessian) [,1] [,2] [1,] 0.0006509066 -0.003590494 [2,] -0.0035904937 0.037368602

18 Exercise Obtain the parameter estimates and their variance for the diagnosis data set using the maximizer

19 Standard software? #Univariate model-exponential library(survival) res.unadjust<- survreg(Surv(timerec,stat)~trt,dist="exponential",data=reconstituti on) res.unadjust summary(res.unadjust) lambda<-res.unadjust$coef[1]; beta<-res.unadjust$coef[2];HR<-exp(beta) lambda;beta;HR

20 Loglinear model representation  Hazard model with parametric baseline hazard can be rewritten in a loglinear model representation  Most often used:

21 Examples Weibull distributions – varying 

22 Survival function for Weibull hazard model  Assume

23 Survival function for Weibull loglinear model  Assume with  From this follows that and thus  Based on the Gumbel assumption, the survival function becomes

24 Two presentations for Weibull event times and thus:

25 Two presentations for exponential event times and thus:

26 survreg function #unadjusted model-exponential res.unadjust<- survreg(Surv(timerec,stat)~trt,dist="exponential",data=reconstituti on) res.unadjust;summary(res.unadjust) mu<-res.unadjust$coef[1];alpha<-res.unadjust$coef[2]; lambda<- exp(-mu);beta<- -alpha;HR<-exp(beta) lambda;beta;HR

27 Exercise Obtain the parameter estimates of the diagnosis data set using the survreg function in R

28 survreg function variances #unadjusted model-exponential res.unadjust<- survreg(Surv(timerec,stat)~trt,dist="exponential",data=reconstituti on) res.unadjust;summary(res.unadjust) mu<-res.unadjust$coef[1];alpha<-res.unadjust$coef[2]; lambda<- exp(-mu);beta<- -alpha;HR<-exp(beta) lambda;beta;HR res.unadjust$var (Intercept) trt (Intercept) 0.01388889 -0.01388889 trt -0.01388889 0.02623457

29 The delta method on variance  Obtaining the variance of using the variance of

30 The delta method - general  Original parameters  Interest in univariate cont. function  Use one term Taylor expansion of with

31 The delta method - specific  Interest in univariate cont. function  The one term Taylor expansion of With

32 survreg function variances #unadjusted model-exponential-variances of transformed variables lambda<- exp(-mu);beta<- -alpha;HR<-exp(beta) Vlambda<- res.unadjust$var[1,1]*(lambda^2) Vbeta<- res.unadjust$var[2,2]

33 Exercise Obtain the variances parameter estimates of the diagnosis data set using the survreg function in R, and applying the delta method


Download ppt "Univariate Survival Analysis Prof. L. Duchateau Ghent University."

Similar presentations


Ads by Google